CONTENTS

1. INTRODUCTION ... 1

2. THEORETICAL BACKGROUND 12
 2.1. Preface ... 12
 2.2. Assumptions and approximations 13
 2.3. Equations of motion 14
 2.4. Solution of Wave equation 16
 2.5. Propagation properties of surface acoustic waves (SAW) ... 17
 2.6. Acoustoelectric current 19
 2.6.1. Preface 19
 2.6.2. The formula of the acoustoelectric current ... 20

3. INVESTIGATION OF THE PROPERTIES OF SLOWLY EVAPORATED THIN METAL FILMS 23
 3.1 The experimental method 23
 3.1.1. Preface 23
 3.1.2. Preliminary preparations 23
 3.1.2.1. The piezoelectric substrate 23
 3.1.2.2. Transducer for surface acoustic waves excitation 24
 3.1.2.3. Evaporation of the metal film on the piezoelectric substrate 24
 3.1.3. The experimental system 25
 3.1.3.1. Preface 25
 3.1.3.2. Surface acoustic wave oscillator (SAWO) 27
 3.1.3.3. Theory of the (SAWO) 27
 3.1.3.4. Measurement of the attenuation of the SAW 29
 3.1.3.5. Measurement of the relative change in the phase velocity of the SAW ... 30
 3.1.3.6. Measurement of the resistivity per square of the metal film 31
 3.1.3.7. Temperature corrections 32
 3.1.3.8. Experimental conditions 32
 3.1.3.9. Problems and troubles encountered during performance of the experiment ... 32
 3.1.3.10. Summary 34
 3.1.3.11. Preparations for repeating the experiment 34
 3.2. Analysis of results 34
 3.2.1. Preface 34
 3.2.2. Measurements 36
3.3. Results. ... 38
 3.3.1. General .. 38
 3.3.2. Results for gold films 39
 3.3.3. Results for silver films. 44
 3.3.4. Results for aluminium films. 45

3.4. Summary. ... 46

3.5. Discussion. ... 47

4. INVESTIGATION OF THE PROPERTIES OF RAPIDLY EVAPORATED THIN METAL FILMS 52
 4.1. General. .. 52
 4.2. Deficiencies of slow evaporation and its effects on the results. 52
 4.3. The extent of reliability of the parameter of resistivity of the film per square. 53
 4.4. The necessities of performing fast-evaporation experiments. 54
 4.5. Experimental arrangements and procedure. 54
 4.6. Curves of attenuation as function of relative change in phase velocity 60
 4.7. Analysis of the results 61
 4.8. Discussion. ... 62

5. MEASUREMENTS OF ACOUSTOELECTRIC CURRENT AND RELATIVE CHANGE IN THE VELOCITY OF SAW AS FUNCTION OF ATTENUATION IN ULTRA THIN METAL FILMS 66
 5.1. General. .. 66
 5.2. Procedure .. 67
 5.3. Measurement of acoustoelectric current 68
 5.4. Measurement of radiation power of an interdigital transducer 70
 5.5. Measurement of radiation resistance of the transmitting transducer. 71
 5.6. Problems and disturbances during the experimentation. .. 73
 5.7. Preparations for repetitive experiment 76
 5.8. Analysis of the results for gold, silver and copper ... 76
 5.9. Acoustoelectric measurements on ultrathin aluminium films 79
 5.9.1. Modifications on the experimental system and procedure for the case of aluminium films 79
 5.9.2. Analysis of results for the case of aluminium ultra-thin films 79
 5.10. Summary and discussion. 81

6. SUMMARY AND DISCUSSION 82
 6.1. General. .. 82
 6.2. The basics of the new model 83
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.1</td>
<td>Film structure.</td>
<td>83</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Mobility of charge carriers according to the model of Neugebauer and Webb (NaW)</td>
<td>83</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Diffusion coefficeint and Einstein relation</td>
<td>85</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Attenuation and change in the velocity of SAW according to the new model.</td>
<td>88</td>
</tr>
<tr>
<td>6.2.5</td>
<td>Study of the functions of attenuation and relative change in velocity of (SAW)</td>
<td>90</td>
</tr>
<tr>
<td>6.2.6</td>
<td>The expected relation $\omega \tau(n)$ according to NaW model.</td>
<td>91</td>
</tr>
<tr>
<td>6.3</td>
<td>Analysis of the results according to the new model</td>
<td>93</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Analysis of the results.</td>
<td>93</td>
</tr>
<tr>
<td>6.3.1.1</td>
<td>Determination of $\omega \tau$ as function of n</td>
<td>93</td>
</tr>
<tr>
<td>6.3.1.2</td>
<td>Determination of the mobility μ_{dc} as function on n_{dc}</td>
<td>94</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Results</td>
<td>95</td>
</tr>
<tr>
<td>6.4</td>
<td>Discussion of the results according to the new model</td>
<td>98</td>
</tr>
<tr>
<td>6.5</td>
<td>Advantages and deficiencies of the new model.</td>
<td>99</td>
</tr>
<tr>
<td>7</td>
<td>APPENDIX</td>
<td>101</td>
</tr>
<tr>
<td>8</td>
<td>REFERENCES</td>
<td>111</td>
</tr>
<tr>
<td>9</td>
<td>ABSTRACT</td>
<td>113</td>
</tr>
</tbody>
</table>