
Birzeit University

Master Thesis

البرمجيات هندسة مجال في العربية بالنصوص الـكينونات وربط فهم
Arabic Named Entity Disambiguation and Linking in

Software Engineering

Author:

Alaa’ Omar

Supervisor:

Prof. Mustafa Jarrar

This thesis was submitted in partial fulfillment of the requirements for

the Master’s degree in Software Engineering from the Faculty of Graduate

Studies at Birzeit University, Palestine

August 28, 2022

https://www.birzeit.edu/
https://www.alaa-omar.me/
http://www.jarrar.info/

"B`x2Bi lMBp2`bBiv

J�bi2` h?2bBb

�`�#B+ L�K2/ 1MiBiv .Bb�K#B;m�iBQM �M/ GBMFBM; BM aQ7ir�`2 1M;BM22`BM;

"v �H��Ƕ PK�`

�TT`Qp2/ #v i?2 i?2bBb +QKKBii22,

S`Q7X Jmbi�7� C�``�`- "B`x2Bi lMBp2`bBiv U*?�B`K�MV

X X

S`Q7X �/2H h�r22H- "B`x2Bi lMBp2`bBiv UJ2K#2`V

X X

S`Q7X JQ?�KK2/ E?�HBHB�- "B`x2Bi lMBp2`bBiv UJ2K#2`V

X X

.�i2 �TT`Qp2/,

iii

Declaration of Authorship
I, Alaa’ Omar , declare that this thesis titled, “Arabic Named Entity Disambiguation

and Linking in Software Engineering” and the work presented in it are my own. I

confirm that:

• This work was done wholly or mainly while in candidature for a research degree

at this University.

• Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

• Where I have consulted the published work of others, this is always clearly at-

tributed.

• Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

v

Acknowledgements
During this thesis, I have learned several essential research skills that, I believe, will

shape my research career. Therefore, I would like to express my sincere gratitude to

Prof. Mustafa Jarrar for the continuous support during all phases of this research;

especially for giving me ideas, revising my thesis, and giving me all datasets and tools

from his team that I needed to conduct this research.

My special thanks go to Prof. Adel Taweel and Prof. Radi Jarrar for all the discus-

sions and their insights that contributed greatly to this thesis. Special thanks to Prof.

Mohammad Khalilia who was continuously supporting me with fine-tuning BERT and

reviewing my experiments. I would like also to thank Tymaa Hammouda for devel-

oping and deploying the needed APIs and integrating them with Birzeit University’s

WSD framework; and to Sana Ghanem for reviewing and revising my Wojood-NED

annotations.

Nobody has been more important to me in the pursuit of this degree than my family. I

would like to thank my parents whose love and support are always with me in whatever

I pursue. My mother has always been my source of encouragement, her love and care

never ceased to help me during the hardest moments. To my children for their patience

and tolerance over the last three years. I must express my very profound gratitude to

my husband Aysar for providing me with unfailing support and continuous encourage-

ment throughout my years of study. I would also thank him for his contribution to

this thesis by auditing the WikiGlossContext corpus, and preparing illustrations. This

accomplishment would not have been possible without him.

Finally, I would like to extend my sense of gratitude to everyone who expressed his

support and/or made Dua for me.…

vii

Contents

Declaration of Authorship iii

Acknowledgements v

Abstract xvii

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 7

1.2.1 Tasks Definition . 9

1.3 Research Questions . 9

1.4 Research Contributions . 10

1.5 Structure of Thesis . 11

2 Background 13

2.1 Introduction . 13

2.2 Knowledge Graphs . 13

2.2.1 Knowledge Graphs Applications 15

2.2.2 Wikidata . 16

The Wikidata Query Service . 19

2.3 Neural Arabic Language Models . 20

2.3.1 BERT . 20

BERT Architecture . 21

viii

BERT Input/Output . 21

BERT Pre-training . 22

BERT Fine-tuning . 23

2.3.2 BERT Models for Arabic . 23

BERT multilingual . 24

AraBERT . 24

QARiB . 25

CAMeLBERT . 25

ARBERT & MARBERT . 26

2.4 Summary . 26

3 Literature Review 27

3.1 Introduction . 27

3.2 Planning and Conducting The Review 28

3.3 Named Entity Recognition in Software-related Text 33

3.4 Named Entity Disambiguation and Linking 39

3.4.1 Rule-based Approaches . 39

3.4.2 Word Embedding Approaches . 40

3.4.3 Neural-based Approaches . 41

3.4.4 Hybrid Approaches . 48

3.4.5 Statistical Approaches . 51

3.5 Ontology Concept Matching . 52

3.6 Word Sense Disambiguation . 54

3.7 Highlight the Research Gap . 55

3.8 Summary . 57

4 Research Methodology 59

4.1 The Entity Disambiguation and Linking Process 59

4.2 The Need For Annotated Corpora . 63

4.3 The Wojood-NED Corpus . 63

ix

4.3.1 Software-specific NEL Tagging 64

4.3.2 Linking Wojood-NED to Wikidata 68

4.4 WikiGlossContext Pairs Corpus . 69

4.4.1 Gloss-Context Pairs Extraction 69

4.5 Splitting into Training, Validation and Test Datasets 76

4.5.1 Splitting WikiGlossContext Induced by The Cross-related Method 77

4.5.2 Splitting WikiGlossContext Induced by The False-Local Method 78

4.5.3 Combined Datasets . 79

4.6 Summary . 82

5 Candidate Lookup 83

5.1 Introduction . 83

5.2 Candidate Lookup Methods . 83

5.3 Index and Analyzer . 85

5.4 Query Configurations . 87

5.5 Candidate Lookup Query Evaluation . 90

5.6 Summary . 92

6 Entity Linking 93

6.1 Introduction . 93

6.2 Entity Disambiguation . 94

6.3 Environmental Setup . 95

6.3.1 Experiment Hyperparameters . 96

6.3.2 Experiments’ Tracking . 97

6.4 Experiments’ Results . 98

6.4.1 Experiments’ Set One: BERT Models 98

6.4.2 Experiments’ Set Two: Different Datasets 100

Remarkable Notes About the Results 103

6.4.3 Experiments’ Set Three: Disambiguation Evaluation 104

Overall Disambiguation Evaluation 106

x

NED Component Disambiguation Evaluation 111

6.5 Implementing Linguist APIs for Entity Linking 114

6.6 Named Entity Linking in Software-related Text 116

6.7 Summary . 119

7 Conclusion and Future Work 121

7.1 Introduction . 121

7.2 Conclusion . 121

7.3 Future Work . 124

7.4 Threats to Validity . 125

xi

List of Tables

1.1 Research questions . 10

3.1 Selected sources for review . 29

3.3 Included related work. 30

3.2 Inclusion and exclusion criteria . 34

3.4 Software-specific NER related work . 35

3.5 Comparison between neural network-based approach related work 43

3.6 Comparison between hybrid approach related work 49

4.1 Software-specific named entities description 65

4.2 �Words with tags example . 66

4.3 Counts of the flat, nested, and total of software-specific entities in the

Wojood-NED corpus. 67

4.4 Statistics about the Wojood-NED software-specific linked entities 67

4.5 List of excluded Wikidata types from the WikiGlossContext 74

4.6 Statistics about the WikiGlossContext corpus 75

4.7 The Wikidata extracted fields’ description 77

4.8 Splitting WikiGlossContext induced by the cross-related method 78

4.9 Splitting WikiGlossContext induced by the False-Local method 78

4.10 Combined datasets’ description . 80

5.1 Query configuration statistics . 92

6.1 NED task environment setup . 96

xii

6.2 Hyperparameters values . 97

6.3 Achieved results (%) after fine-tuning three different Arabic BERT mod-

els on WikiGlossContextcross-related dataset (Table 4.8) 99

6.4 Achieved results (%) after fine-tuning Arabertv02 using different datasets

(Table 4.10) using ArabGlossBERT test 101

6.5 Achieved results (%) after fine-tuning Arabertv02 using different datasets

(Table 4.10 on WikiContextGloss and ArabGlossBERT tets 102

6.6 A summary of the pre-trained models’ information 103

6.7 Achieved results(%) per class after evaluating the two components (Can-

didate lookup and NED) on the Wojood-NED corpus using Wikidata

description as a gloss . 107

6.8 Achieved results(%) per class after evaluating the two components (Can-

didate lookup and NED) on the Wojood-NED corpus using Wikipedia

description as a gloss . 107

6.9 Achieved results(%) per class after evaluating the fine-tuned models on

the Wojood-NED test corpus using Wikidata description as a gloss . . . 111

6.10 Achieved results(%) per class after evaluating the fine-tuned models on

the Wojood-NED test corpus using Wikipedia description as a gloss . . 113

xiii

List of Figures

1.1 Example of the entity linking process . 4

1.2 Knowledge graph representation of software-specific named entities, and

their connection to different named entity types 5

1.3 Aliases for Object-Oriented Programming Q79872 in Wikidata in the

Arabic language. 8

2.1 knowledge-graph overview (Evans, 2022) 14

2.2 Knowledge graph applications.(Zou, 2020) 17

2.3 Data structure of item Q251 in Wikidata. 18

2.4 Wikidata growth (Group, 2022) . 19

2.5 Wikidata SPARQL query service UI with an example query 20

2.6 BERT input representation. The input embeddings are the sum of the

token embeddings, the segmentation embeddings and the position em-

beddings (Devlin et al., 2018) . 22

2.7 Overall pertaining and fine-tuning task for BERT (Devlin et al., 2018) . 23

3.1 Literature review methodology . 29

3.2 Published papers per year . 30

3.3 NER example . 35

3.4 General architecture for neural entity linking (Alam et al., 2022). . . . 42

xiv

4.1 The presented architecture has three main components : i) NER Tagging

that extract named entities from a free-text ii) Candidate Lookup returns

all possible candidates for a given ambiguous named entity iii) Entity

Disambiguation: BERT-based transformer model to choose the suitable

named entity from a set of candidates. 60

4.2 Sentences distribution . 67

4.3 Examples of flat entity of mentions of different types. 68

4.4 NED corpus building and annotating steps 70

4.5 Glosses and contexts length in words . 71

4.6 Aliases as found in Wikidata for the item Q79872 71

4.7 Item Q79872 aliases expansion . 72

4.8 Example of False pairs generated using cross-relating. 75

4.9 Example of a negative pairs generation based on the false-local method. 76

5.1 The Arabic analyzer configuration . 85

5.2 The English analyzer configuration . 86

5.3 Query body configuration . 88

5.4 Achieved results of applying search using the fine-tuned query 91

6.1 Tokens to ids representation of the sequence 94

6.2 The overall accuracy change for the model M5 when using Wikidata

glosses (Table 6.7) vs using Wikipedia glosses (Table 6.8) 109

6.3 Cosine-similarity between contexts and glosses 110

6.4 The accuracy change comparison per class for the M5 model results

(Table 6.8 vs Table 6.10) . 112

6.5 Example 1: Qualcomm has introduced a new chipset for smartwatches. . 115

6.6 Example 2: Mark Zuckerberg founded Facebook 116

6.7 Example 3: YouTube announced that it has started rolling out picture-

in-picture support . 116

xv

List of Abbreviations

KG Knowledghe Graph.

KB Knowledghe Base.

NED Named Entity Disambiguation.

NER Named Entity Rcogntion.

NEL Named Entity Lookup.

EL Entity Linking.

ER Entity Rcogntion.

SDLC Software Development Life Cycle.

SRS Software Requirement Spesification.

NLP Natural Language Processing.

OSIAN Open Source International Arabic News Corpus.

LSTM Long Short Term Memory.

BI-LSTM BIdirectional Short Term Memory.

SE Software Engineering.

CRFs Conditional Random Fields.

OOV Out Of Vocabulary.

BERT Bidirectional Encoder Representations from Transformers.

POS Part Of Speech.

WDQS Wikidata SPARQL Query Service.

RDF Resource Description Framework.

CSV Comma Seperated Value.

UI User Interface.

xvi

QA Question Answering.

ML Machine Learning.

CNN Convolutional Neural Network.

MLM Masked Language Model.

NSP Next Sentence Prediction.

PPR Personalised Page Rank.

WSD Word Sence Disambiguation.

MTS Machine Translation System.

WN Word Net.

AWN Arabic Word Net.

TF-IDF Term Frequency-Inverse Document Frequency.

MSA Modern Standard Arabic.

DA Dialectal Arabic.

xvii

Abstract
This thesis introduces an entity-linking module for Arabic-named entity disambigua-

tion and linking for software-related texts. The entity-linking process consists of three

main components (NER, candidate lookup, and NED). To achieve the first component

(NER), we used Wojood, a NER API developed at Birzeit University. However, as

Wojood does not support software-specific entities, we extended the Wojood corpus

by annotating part it (the Quora module) with six additional software-specific tags

commonly used in the software engineering domain. Second, to implement the can-

didate lookup component, we downloaded the Wikidata dump and extracted the first

sentence from Wikipedia for the Arabic Wikidata nodes connected to Wikipedia using

the site links. Then, we used the Elasticsearch framework and customized the querying

parameters to enable proper and effective lookup. The candidate lookup component

was evaluated using 598 unique named entities’ surface forms and achieved (70%) ac-

curacy. Finally, the named entity disambiguation was treated as a sentence-pair bi-

nary classification task. Firstly, we built a large corpus of about 1M True pairs from

Wikidata and Wikipedia called WikiGlossContext. The False pairs were generated

based on the True pairs using two different methods (cross-relate and local). We used

these datasets to fine-tune different Arabic pre-trained BERT models. We also ex-

perimented with different data variations by combining WikiGlossContext with the

ArabGlossBERTcross-related and the ArabGlossBERTfalse-local datasets. As a result,

we fine-tuned eleven different models using three different Arabic BERT models and dif-

ferent data variations using the WikiGlossContext dataset and the combined datasets.

The model that was fine-tuned using WikiGlossContext achieved the highest classifi-

cation accuracy (97%). However, the model is over-fitted because of the lexical overlap

between the extracted pairs. Finally, to further evaluate the fine-tuned model on an

external dataset, we performed a disambiguation evaluation on the Wojood-NED

corpus using software-specific entities. The disambiguation evaluation was done using

glosses of two different knowledge bases. First, we used glosses from the Wikidata

description field, and the second time, we used glosses from the Wikipedia summary.

xviii

The results showed that the best model achieved the highest linking accuracy (84%)

among the other models. More importantly, the best-achieved accuracy of the two

components together (the candidate lookup and the NED) was only (74%).

 ملخص

هذه) نموذجا الأطروحة تقدم المسماة ال كينونات بال كينونات لواردةا(named entitiesلربط النصوص في
(nodes) (يكيبيانات البرمجيات بعلى ال كينونات التي تتعلق الأطروحةوتركز ؛(Wikidataالمقابلة في الشبكة المعرفية و

جزاء رئيسية أ ة ثلاثعلى الربط المقترح يحتوي نموذج. التشغيل، وغيرها أنظمةو ،والتطبيقات ،البرمجةلغات أسماءمثل
المسماة من النصوص، أما (NER)الأول الجزءيخدم كل منها الآخر. يهدف ال كينونات الثاني الجزءلاستخراج

(Candidate lookup) يف المرشحة)فيهدف إلى استرجاع مجموعة من يكيبيانات الموجودة (candidatesالتعار في الو
يفوالتي قد تحتوي على من ال كينونات أي إلى تحديد يهدف (NED) الثالث الجزء. المسماة لل كينونة الصحيح التعر

يكيبيانات. المرشحة الأول الجزء لتفيذهي ال كينونة الصحيحة)فك الالتباس الدلالي(، وبالتالي ربطها بالشبكة المعرفية و
(NER ،)ال كينونات المسماة من النصوص، تم تطويرها لاستخراجاجهة برمجة مستخدمة و وهووجود، خدامباست قمنا

لا وجود لأن نظر ا بيرزيت. جامعة قمنا يدعمفي فقد بالبرمجيات، الخاصة المسماة أنواع من ةست بإضافةالكيانات
تسُتخدم بشكل شائع في التيال كينونات خاصة ،من موقع كورا(جمعه تم الذي)الجزء وجود مدونة الى ال كينونات

هذا على أطلقنا البرمجيات. هندسة) وجود مدونة من الجزءمجال استرجاع بخصوص(. Wojood-NEDاسم
يكيبيانات باستخراجقمنا ،(Candidate lookup)ال كينونات المرشحة جميع ال كينونات الموجودة في الشبكة المعرفية و

(Wikidata خاصة ال كينونات التي ،)بية يكيبيانات (في node) كينونة ولكل. لها وصف باللغة العر استخراج ب قمناالو
يكيبيديا. ال موقعأول جملة من من استرجاع لنتمكنضبط الاستعلام و(Elasticsearch) تقنيةاستخدمنا ذلك، بعدو

 598 باستخدام (Candidate lookup)استرجاع ال كينونات المرشحة تقييم تممجموعة مرشحة من ال كينونات. أفضل
ُ حققو فريدة مسماة كينونة ال كينونات وتحديد أي الدلالي الالتباس فك تحديد أجل ومن%. أخير ا، 70عادل دقة ت

 sentence pairتم التعامل مع هذه المشكلة كمشكلة تصنيف ثنائي الجملة) (NED)المرشحة هي ال كينونة الصحيحة
binary classification ببناء قمنا أولا ، الجمل مدونة(. من زوج حوالي مليون من استخراجها تم ة،صحيحالمن

يكيبيانات وال يكيبيدياالو آليا زواج جمل خاطئة أ استخراجب ذلك بعد قمنا(. WikiGlossContextأطلقنا عليها اسم) ،و
يقتين مختلفتين)الارتباط من جميع استخدمنا النهاية، وفي(. المحلي الاختيار و ،المتبادلالأزواج الصحيحة باستخدام طر

يةلتدريب نماذج والخاطئةالصحيحة الأزواج بتدريب عدة نماذج، قمنا(. BERT) العميق علمتال تقنيات باستخدام لغو
استخدام ب تدريبهتم والذي الأول. حقق النموذج ةلتحديد النموذج الأفضل دقبكميات وتشكيلات مختلفة من البيانات

(WikiGlossContext(دقة أعلى المتبادل الارتباط زائد ول كن (.97%(بشكل مجهزة البينات
(overfittedوذلك لتقارب المعنى بين السياقات والم) ينا دقة،لتحديد النموذج الأفضل و ،بناء على ما تقدم .رشحات أجر

وهي مجموعة بيانات خارجية لم يتم (Wojood-NEDمن مجموعة) اتتقييم ا للتوضيح باستخدام كيانات محددة وسياق

يف من اثنتينباستخدام لدقة ربط ال كينونات. تم إجراء تقييم تدريب النماذج على بيانات شبيهة بها القواعد من تعار
يفاستخدمنا أولا ،. المعرفية يكي تعار و وصف حقل استخدمنا بيانات،من الثانية المرة يفوفي ملخص تعار من

يكيبيديا. أظهرت ا والأهم من النماذج الأخرى. ب مقارنة(%84أعلى دقة ربط) حقق الأفضللنتائج أن النموذج و
أعلى تكانو باستخدام النماذج المختلفة (Candidate lookup and NEDالدقة الكلية للجزئيين معا)تم حساب ،ذلك
 . (%74فقط) دقة

xxi

Dedicated to my family, for their unconditional love and support

1

Chapter 1

Introduction

In this chapter, a general overview will be presented about Arabic named-entity disam-

biguation and linking. Firstly, the motivation of our work is presented by starting with

the importance of named entity disambiguation in software-related texts using knowl-

edge graphs (KGs). While the problem statement and the research questions will be

discussed in sections 1.2 and 1.3 respectively. Finally, the main findings, contributions,

and document outline will be presented at the end of this chapter.

1.1 Motivation

The World Wide Web is considered a valuable source of information, as it hosts a

huge amount of unstructured data such as social networking and question answering

websites, bug repositories, application reviews, scientific papers, learning platforms,

news articles, archived mailing lists (Malyshev et al., 2018a). Recently, websites such

as StackOverflow and Quora have proven their existence as a highly valuable source

of knowledge for both researchers and software developers (Derczynski et al., 2014),

as these platforms play a significant role in problem-solving and knowledge sharing for

workers in the domain of software engineering and development. The primary objective

of content reuse on these websites is to seek discussions about a specific software-related

entity, for example, (a programming language, framework, or programming paradigm),

to discover valid usage patterns, solutions to bugs, or alternatives (Ye et al., 2016).

2 Chapter 1. Introduction

The richness of software-related information is continuously growing at an exponential

rate on such platforms. User-created content on these platforms has become a vital

root of knowledge. However, most of the user-generated content is in the form of un-

structured data, e.g., free text, photos, and videos. With regard to the market survey

(Gravili et al., 2018), between 2009 and 2020, the amount of digital data will grow

by a factor of 44, but the staffing and investment to manage it will grow by a factor

of just 1.4. With the present direction, data related to software-aspects (we mean by

software-related aspects in this thesis, the texts related to the software development

life cycle that contains software-specific named entities defined in Table 4.1, such as

user stories that are used to capture features in Agile, software requirements, bugs

descriptions, discussions about software-related issues, to mention a few) will magnify

considerably at a faster rate than ordinary digital data. Transacting with such a major

mismatch is a major defy. In this context, one of the propositions to this issue is to

promote tools for information extraction, with the aim of converting unstructured data

into structured data (Marrero et al., 2013).

The abundance of socio-technical data about software-related aspects on the web moti-

vates the research community to invest more in developing frameworks for information

retrieval, information extraction, and search engines with an aim to get the value of

this unstructured content in a way that positively impacts the software development life

cycle and aids software engineers in better doing their jobs. For example, the authors

Malik et al., 2021 said that “in the software requirement Extracting the main entities in

an software requirements specification (SRS) document helps in sorting the data and

identifying necessary information, which can be important for the development pro-

cess, quality assurance, operations, and maintenance in the software industry.” While

in software bug-specific, the authors C. Zhou et al., 2020 said that “ existing studies

have some limitations on mining bug data. First, the overall structural features and

inherent semantic information of the bug report are ignored during the data processing”

viz., available information retrieval tools often neglect the semantics of the words and

1.1. Motivation 3

harm the accuracy of classifying bugs. Besides, the same authors C. Zhou et al., 2020

said that “developers still have to spend a lot of time reviewing and analyzing these

bug reports in order to extract the information they want. These limitations will re-

duce the accuracy of information retrieval and affect the efficiency of bug repair tasks”

. Since the software engineering-related content on the World Wide Web, and formal

documents such as SRS are written in natural language and tend to be ambiguous, it

is important to be first pre-processed to be understood. Ambiguity means that the

reader interprets the written piece of information in different ways, or different readers

interpret it in many different ways. The main objective of the pre-processing phase is

to reveal ambiguity and improve document understanding. For this aim, natural lan-

guage processing (NLP) tools are used for information extraction from free text such

as app reviews, and bugs repositories (Maalej et al., 2016; Maalej & Nabil, 2015), to

mention a few. However, Ryan, 1993 stated “NLP is not appropriate to be used as the

resulting reliability of the system is doubtful”. According to the survey on the busi-

nesses requiring software conducted at the Universita‘ di Trento in Italy (Mich et al.,

2004), the authors found that most of the documents ready for software analysis are

provided by the end-user are obtained by conducting interviews. Furthermore, 71.8%

of these documents are written in a common natural language, while 15.9% is written

in structured natural language, but only 5.3% of them are written in the formalized

language (Mich et al., 2004).

One of the major challenges researchers face when mining software-related content is

that the text needs to be well-understood. However, text semantics are typically ob-

vious to humans, but not to machines (Rizzo & Troncy, 2012). For example, given

the sentence “I hate messenger and WhatsApp they are bad programs”. This sentence

might be obvious to humans - but not machines. Machines do not know if “messenger”

means a prophet or a postman or if it is the name of a software application. In this

research, we will focus on this issue (understanding the semantics of a given text). This

will be achieved by recognizing six specific software named-entity types (programming

4 Chapter 1. Introduction

Figure 1.1: Example of the entity linking process

language, software standard, framework, software standard, programming paradigm

and platform) in a given sentence and linked each named entity with its corresponding

node in Wikidata. Figure 1.1 illustrates, by example, the stages of each component

involved in the entity linking task, as the entity Signal/سيجنال in this example is linked

to the Q19718090 ية الفور للمراسلة free/تطبيق encrypted communications app 1. As the

first step, we have to be able to recognize named entities - known as named entity

recognition (NER) - in the software-related context and classify these entities into a

set of predefined categories 2. Second, for each named entity from the first step, the

candidate lookup component is used to look up all possible matches for that entity

on the knowledge graph. Finally, the named entity disambiguation component is used

to determine which candidate from the returned list is the correct one based on the

context that contains that named entity.

The objective is to arrange the extracted insights and information into knowledge bases

that define the relationship between software-related entities together, in a manner that
1https://www.wikidata.org/wiki/Q19718090
2The NER implementation is beyond this thesis objectives. However, we used the Wojood-NER

(Jarrar et al., 2022) API that is published by Birzeit university. And we manually annotated Wojood-

NED which is part of Wojood, with additionally six software-specific tags and used this corpus for

evaluation purposes. For full details, please refer to chapter 4

https://www.wikidata.org/wiki/Q19718090

1.1. Motivation 5

Figure 1.2: Knowledge graph representation of software-specific named
entities, and their connection to different named entity types

facilitates finding different software entities with high accuracy. Such a way of organiz-

ing knowledge about software-specific named entities could be represented as ”knowl-

edge graphs” (Meij et al., 2014). Knowledge graphs which have many applications can

help in entity disambiguation by linking a specific software named entity with its rep-

resentative node in a knowledge graph, and hence, helps reach related content about a

specific software-named entity with other entities . This information includes relations

to another related software-related content in a triple format representation (subject,

predicate, object). Figure 1.2 demonstrates a simple example of how named entities

are stored in a knowledge graph, and how relations between entities are maintained, for

example (Apple Inc, Developed, iOS) is a triple that reads ”Apple Inc. developed iOS”.

Entity Linking (EL) is defined as matching the mentions aka (Named Entities, surface

forms) with their corresponding nodes on the knowledge graphs (Möller et al., 2021),

such as Wikidata (Vrandečić & Krötzsch, 2014), Freebase (Bollacker et al., 2008), DB-

pedia (Auer et al., 2007), or Yago4 (Pellissier Tanon et al., 2020). Wikidata differs from

the aforementioned knowledge bases (KBs) in such that it depends on the community

6 Chapter 1. Introduction

to add and update its content3, the rest of the KGs such as Freebase and Yago which

are one-time generated KGs and hence, became outdated. While DBpedia remains

updated with a lag of one-month 4. Hence, it is more suitable for recent modern indus-

trial applications such as smart assistance (Möller et al., 2021). Furthermore, Wikidata

nodes are multilingual. That is, the same mention has labels, descriptions, and aliases

in many languages. These factors attract more researches to link with Wikidata. The

presence of named entity aliases helps in candidate generation modules, and hence in

the entity linking task as it increases the possibility of entity surface forms. This fea-

ture is not available, for example, in DBpedia. The existence of the item description on

Wikidata, which is a short sentence that is expressed in natural language helps in entity

disambiguation for similar items with the same label by providing a local context of the

item. NED is substantial for Information Retrieval (IR) and semantic analysis to make

precise analysis of base entities rather than fuzzy mention chains (Hachey et al., 2013).

Moreover, named entity disambiguation (NED) can assist in developing applications

such as entity-based research. Entity linking helps to supplement search results with

further semantic information, resolve query ambiguity, and to limit the search space

(Alam et al., 2022), text summarizing, and news analysis (Hoffart et al., 2014).

In this research, we are interested in linking named entities in the Arabic language with

its Arabic matching nodes in Wikidata. Arabic is the official mother tongue of millions

of people in the Middle east. Therefore, it is important to develop tools that can help

avoid ambiguity in the software engineering phases such as requirements, development,

bugs, and testing. Moreover, Arabic is widely used in community discussions related to

software issues using emails, blogs, and software management tools, to mention a few.

Experience has proven that ambiguity of user-written related content in the Arabic

language is a severe problem that decreases the production of high-quality software

and increases scheduling and affects budget during the mismatch in understanding the

ambiguous mentions and intent (Elazhary, 2016). Arabic has the highest population
3https://stats.wikimedia.org/#/metrics/wikidata.org
4https://release-dashboard.dbpedia.org/

https://stats.wikimedia.org/#/metrics/wikidata.org
https://release-dashboard.dbpedia.org/

1.2. Problem Statement 7

growth rate on the Internet between 2000 and 2013 with a growth rate of about 5000%.

Thus, unorganized Arabic content on the Internet is growing rapidly. For example, in

March 2014, Arabic users on Twitter contributed on average with 17.5 million tweets per

day 5. However, it is still considered a resource-poor language (Gad-Elrab et al., 2015).

The structured and semi-structured content on knowledge graphs and knowledge bases

such as Wikidata and Wikipedia lag behind when compared to the English language.

1.2 Problem Statement

Resolving ambiguity caused by software-related content manually is a laborious, time-

consuming, error-prone process, and thus costly (Berry et al., 2000). Besides, current

research tools intended to extract and classify information from software-related con-

tent lack accuracy and neglect semantics (C. Zhou et al., 2020). This leads to confusion,

wasted effort, and rework. Due to the ambiguity in the intent of internet users in QA

websites, App stores, user stories, etc., and the difficulties arising from the morpholog-

ical nature of the Arabic words and understanding their semantics which are listed in

detail below. This research introduces an entity linking components to resolve semantic

ambiguity, mainly in software-related texts. The aim of these components is to link

software-specific named entities with their corresponding nodes in Wikidata to resolve

their semantic ambiguity.

Software-related named entity disambiguation limitations: When writing about

software-related aspects (e.g., user story, app review, bug report, or security issue) es-

pecially on social-technical websites (e.g., Quora or StackOverflow), users do not always

describe their intent in a manner that follows the standardized naming conventions and

description formats. Moreover, the user feedback usually contains unstructured text

which compromises mixed languages embayed with code, abbreviations, slang, dialects,

software-specific vocabulary, and vague language, which makes the NER task more dif-

ficult especially for the Arabic language. Hence, affects the NED process as errors
5http://www.arabsocialmediareport.com/

http://www.arabsocialmediareport.com/

8 Chapter 1. Introduction

propagated from NER into NED.

OOP

كائنية برمجة

التوجيه كائنية البرمجة

المنحى شيئية

المنحنى كانئية برمجة

الشيئية البرمجة

التوجه كائنية البرمجة

المنحى كانئية برمجة

التوجه كائنية البرمجة

موجهة كائنات برمجة

التوجه كائنيه برمجه

التوجه غرضية برمجة

موجهة برمجة

شيئية برمجة

Figure 1.3: Aliases for Object-Oriented Programming Q79872 in Wiki-
data in the Arabic language.

Challenges of Arabic language: Arabic named entities disambiguation and linking

is considered to be a challenging process. Arabic is a morphologically rich language, it

has a different character set and writing rules from Latin languages. So, the techniques

used for English tokenization and lemmatization are not valid for Arabic free-text. This

is in addition to the issues arising with the presence of translated and transliterated

entities (Elazhary, 2016). As modern text compromises translated and transliterated

named entities, with non-standard spelling, for example, Google/جوجل is written as

Google/غوغل , .Google/قوقل This applies to most of the translated technical terms.

Figure 1.3 shows thirteen different aliases used in Arabic for the concept كائنية البرمجة
OOP/التوجه - which means ”object-oriented programming”. This can lead to confusion

if the concept is unknown, recognized by the reader, or not used consistently. The

common challenge that faces the NED process of the Arabic language is the lack of

resources on the knowledge bases for the Arabic language. Arabic entities in Wikidata

https://www.wikidata.org/wiki/Q79872

1.3. Research Questions 9

do not have enough coverage and quality, in a manner that is consistent with the fast-

growing Arabic contact. Furthermore, the lack of benchmark datasets available for

the Arabic Language comes in second. Where the lack of research that covers many

knowledge graphs, especially Wikidata is also a significant reason.

1.2.1 Tasks Definition

In this research, the entity disambiguation (NED) process is defined as follows: given

an input sentence, which is an ordered set of words W = w1, w2, w3, ..., wn of length (n)

tokens; and given a set of named entities in W denoted by NE = (ne1, ne2, ne3, ..., nek),

where (k ≤ n) with their tags denoted by T = (t1, t2, t3, ..., tk). And given a set

of entities in a KG denoted by E . The NED process contains two main sub-tasks

(candidate lookup and entity disambiguation) which are defined as the following:

• Task 1: (Candidate Lookup) Given an entity label nex with its tag tx, the main

objective is to return a minimum set of candidate entities C(nex) = (ex1 , e
x
2 , e

x
3 , ..., e

x
n|exi ∈

E) from KG to possibly match with the given entity.

• Task 2: (Entity Disambiguation) given a named entity nex in W and a set of

candidate nodes C(nex) in KG, the goal is to decide which candidate from the

set of candidate nodes C(nex), the entity nodes nex matches, i.e., same as, nex.

1.3 Research Questions

This research will review existing studies to provide in-depth details about Arabic

named-entities’ disambiguation and linking, including concept matching. The main

goal is to advance the scientific literature with more accurate ways to disambiguate

and link entities in a given context (i.e., a sentence about a software-related issue) with

nodes in knowledge graphs, like, Wikidata. In order to achieve this goal, three research

questions are formulated and presented in Table 1.1. The answers to these questions,

which are directly linked to the objective of this research, can provide missing gaps and

challenges, and contribute to resolving them.

10 Chapter 1. Introduction

Table 1.1: Research questions

Question

RQ1a Given a sentence about a software-related text (e.g., requirement,

review, bug report), how understanding the semantics of this sen-

tence improves understanding and classifying these issues?

RQ1b. Given the lack of annotated Arabic corpora (i.e. datasets labeled

with software-specific named entity classes) in the software-related

aspects, what software-specific named entity classes are required

to enable understanding the semantics of these named entities?

RQ2. Given a word in a sentence (whether this word refers to a named

entity or a concept, i.e., unnamed), what is the most accurate

way (using e.g., state-of-the-art language models and different

datasets) to disambiguate the semantics of this word with a node

in a knowledge graph like Wikidata?

RQ3. Given a named entity in a sentence (especially in software-related

discussion forums), what is the best performing fine-tuned Arabic

Bert model to link this entity with a node in Wikidata?

1.4 Research Contributions

We have presented an entity linking mechanism for Arabic-named entity disambigua-

tion and linking of three main components (NER, candidate lookup, and the NED

component)6. The key contributions of this research can be summarized as follows:
6In this thesis, the NER component was not implemented. However, as said earlier, we used Birzeit

NER API named Wojood (Jarrar et al., 2022), and manually annotated Wojood-NED, part of Wojood

with additional six software-specific named entities for evaluation purposes, without the need to refine-

tune the NER model

1.5. Structure of Thesis 11

• Wojood-NED corpus: which is part of the previously annotated Wojood cor-

pus (Jarrar et al., 2022). We took about ~50k tokens from Wojood, those that

were originally extracted from Quora (a discussion forum about software-related

issues), and previously annotated using 21 classes of entities. We used this part

of Wojood (we call it Wojood-NED) and enriched it with additional six software-

specific classes and linked them with Wikidata using Wikidata Q-identifier.

• The candidate lookup was implemented by building a local data store from the

Wikidata and Wikipedia dumps. A custom analyzer was built to index the ex-

tracted data using the Elasticsearch framework (Kuc & Rogozinski, 2013). Then,

a boolean query was fine-tuned to retrieve the most accurate candidates for the

named entity. The query was tested on named entities from Wojood-NED. The

results show that the overwhelming majority (68%) of the correct named entities

came in the first order candidate by the query.

• A corpus called WikiGlossContext was constructed for the sentence-pair clas-

sification task. The True pairs for each Arabic named-entity were extracted from

the Wikidata description and the corresponding Wikipedia definition. At the

same time, the False pairs were generated based on the True pairs with two differ-

ent methods (cross-relate and false-local). As a result, WikiGlossContextcross-relate

contains 1,106,408 (True and False) pairs and the WikiGlossContextfalse-local

contains 1,142,280 (True and False) pairs.

• We used multiple datasets combinations (of WikiGlossContext and ArabGloss-

BERT (Al-Hajj & Jarrar, 2021)) in order to fine-tune different Arabic BERT

models and compare between them.

1.5 Structure of Thesis

Chapter 2 This chapter provides comprehensive background information and high-

lights the implicit basic principles and concepts that serve as the basis for addressing

challenges, and provides a solid background and concepts necessary to understand the

12 Chapter 1. Introduction

rest of the thesis.

Chapter 3 In this chapter, prior studies that are closely related to the named entity

disambiguation and concept matching are discussed in-depth, with a concentration of

studies talked about Arabic named entity disambiguation as well as those studies that

targeted the software-specific named entity disambiguation and recognition to reveal

the research gap.

Chapter 4 In this chapter, the research methodology used, based on the literature re-

view, the gap and shortcomings in Arabic studies, in particular, are addressed. Where

we presented an entity linking components for Arabic-named entity’s disambiguation

and linking, including data processing and corpora building and annotation.

Chapter 5 In this chapter, the candidate lookup component is illustrated, including

local store building, analyzer building and data indexing, query fine-tuning, and eval-

uation.

Chapter 6 In this chapter, Entity linking and disambiguation are presented. The

needed experimentation to fine-tune the BERT model was conducted, and the results

were reported and discussed. Moreover, the models’ evaluation and selection were illus-

trated, and answers to the research questions are provided. Finally, the implementation

of the components’ APIs are provided and examples are demonstrated.

Chapter 7 This chapter provides a conclusion, future works and threats to validity.

13

Chapter 2

Background

2.1 Introduction

To handle the problem of named entity disambiguation for the Arabic language in the

software-related domains, and leveraging context from KGs as illustrated in chapter

1. A comprehensive and thorough approach is necessary to obtain insights that cover

different perspectives. This chapter provides comprehensive background information

and highlights the implicit basic principles and concepts that serve as the basis for

addressing challenges. In section 2.2 we illustrate the concepts related to knowledge

graphs in general and describe in detail the background knowledge and concepts about

Wikidata in section 2.2.2. In addition, the state-of-the-art neural Arabic language

models based on transformers will be referred to in section 2.3.

2.2 Knowledge Graphs

The term knowledge graph was coined in the 1980s by a group of researchers from both

the university of Groningen and the university of Twente (James, 1991). The term was

then used to describe their proposed knowledge-based system that combines knowledge

from multiple resources for representing natural language (James, 1991; Sri Nurdiati &

Hoede, 2008). Their proposed KG has a limited set of relations. Besides, their main

https://www.rug.nl/?lang=en
https://www.utwente.nl/en/

14 Chapter 2. Background

focus in this KG was modeling human interactions which contradict the currently ac-

cepted concept knowledge graphs (Ehrlinger & Wöß, 2016).

Figure 2.1: knowledge-graph overview (Evans, 2022)

Google introduced the concept of the modern knowledge graph definition in 2012 as a

semantic improvement of the search engine feature to allow users to search for things

also known as real-world objects (Singhal, 2012). Since that the term knowledge graph

was associated with a group of applications, such as YAGO (Suchanek et al., 2007), DB-

pedia (Auer et al., 2007), Wikidata (Vrandečić & Krötzsch, 2014), Firebase, Google’s

Knowledge Vault, Yahoo semantic search tool, Microsoft’s Satori, in addition to Face-

book’s entity graph. Albeit these applications have major differences in architecture,

purpose, and technology, they have something in common, which is, that they all use

the Linked Data concept (Ehrlinger & Wöß, 2016) that emerged in 2009, and aims to

link the different databases semantically to produce a large connected graph. Figure 2.1

illustrates the knowledge-graph concept and how it links entities, concepts, and their

relations in a graph manner that is based on the triple (subject, predicate, object).

For example, Da VINCI painted MONA LISA. The two entities Da VINCI and

MONA LISA are linked using a property painted.

2.2. Knowledge Graphs 15

Knowledge graphs have attracted attention in several areas. The fact that these

databases are systematically structured helps machines interpret them, and hence build

more intelligent machines. The application domains of the knowledge graphs are de-

picted in Figure 2.2 as Xiaohan Zou assembled the different applications mentioned in

the literature and then introduced them in a survey paper (Zou, 2020).

2.2.1 Knowledge Graphs Applications

Based on (Zou, 2020), the knowledge graphs applications domains have spanned mul-

tiple areas, this includes building recommender systems. Recent studies have begun to

consider KGs as a source of collateral information. Relationships with different types

of knowledge graphs help amend the accuracy of the recommender and raise the variety

of the recommended items. They also offer the possibility of interpretation for recom-

mendation systems. Generally, most of the present ways for constructing KG-based

recommendation systems are embedding-based and path-based approaches. Informa-

tion retrieval, besides they are efficient in question and answering systems, where bots

replace humans such as XiaoIce (L. Zhou et al., 2020), Microsoft Cortana for Windows,

and Apple Siri. The need for machines to understand the semantics of the words and

the intent of the query is vital for the success of such QA systems. Knowledge bases

such as Freebase and Dbepdia are sued by researchers for QA systems using many tech-

niques such as semantic parsing, information retrieval, and embedding-based. Recently

researchers shifted toward deep learning and neural networks.

In another aspect, many domain-specific applications made use of the knowledge graph

semantic structure and start to draw attention in many fields such as cybersecurity,

biomedical, and financial to mention a few. Besides, the applications of knowledge

graphs extend to other applications such as social media and geoscience. Unlike the

health care domain. Although in the field of security, knowledge graphs are important

to identify, predict and detect attacks and fraud. Some researchers concentrate on

16 Chapter 2. Background

building cybersecurity knowledge bases (Jia et al., 2018; Qi et al., 2018), but more

research is needed on how to make use of the knowledge graphs reasoning to update

KGs with new findings in this domain.

In the field of information retrieval, large companies have taken the lead by taking

advantage of knowledge graphs to improve the services of search engines for their ser-

vices, for example, Google uses Google knowledge graph and Facebook carries out

entity queries over graphs. KGs that contain structured and linked information about

real-world entities help improve the understandability of the query’s semantics to bet-

ter interpret and retrieve the correct results based on these facts. There are many

potential methodologies to use the semantics of KGs in various components, such as

query and document representation, besides the search engine ranking.

2.2.2 Wikidata

Wikidata (Vrandečić & Krötzsch, 2014) is a community-driven knowledge graph that

was launched in October 2012 by the Wikimedia group. Wikidata is an editable, free

multilingual that assembles an enormous amount of structured data to provide support

for Wikipedia, Wikimedia, etc. At first, the Wikidatas’ functionality was limited, as

editors are only authorized to add items and link them to Wikipedia articles. But, in

January 2013, three Wikipedias, Hungarian, Hebrew, and Italian, started to connect

with Wikidata. Meantime, the community also communicates to Wikidata by con-

tributing more than three million items. The English Wikipedia followed in February.

While all Wikipedia editions were linked to Wikidata in March. As of July 2020, Wiki-

data has approximately 87 million structured data articles across diverse domains. 73

million elements are interpreted as entities because of the presence of an is_instance

property. Wikidata is huge compared to DBpedia, as the latter only has around 5

million entities (Pellissier Tanon et al., 2020). The is_instance property compromises

a much wider range of entities than DBpedia. Wikidata has about 8.5 million persons

whereas DBpedia has only about 1.8 million (October 2020). Therefore, the difference

2.2. Knowledge Graphs 17

Knowledge graph
applications

Question
Answering

Semantic
parsing
based

Information
retrieval

based

Embedding
based

Deep
learning

More
complex

tasks

Recommender
systems

Embedding
based

Path
based

Other
methods

Information
retrieval

Query
represen-

tation

Document
represen-

tation

Ranking

Deep
learning

Domain
specific

Medical

Cyber
security

Financial

News

Other
applications

Social
networkClassification

Geo-
science

Other ap-
plications

Figure 2.2: Knowledge graph applications.(Zou, 2020)

in size is clear (Möller et al., 2021).

Recently, Wikidata has gained publicity as a target database for linking entities (Kolit-

sas et al., 2018; Sorokin & Gurevych, 2018a; Weichselbraun et al., 2018). Figure 2.4

illustrates the fast-growing community of Wikidata, as the sub-figure 2.4a shows the

size of active editors (editors with five or more edits) during the period from Jan 2012

until Oct 2021 with an average of 11K edits. While the sub-figure 2.4b shows the

18 Chapter 2. Background

number of new pages created during the same period with 96M as average. Wikidata

stores data in a collection of items, each item has a unique identifier in the form of

Q-identifier e.g (Q34211), a label that stores the name of the entity, a description

about the item to disambiguate it from namesakes, and aliases alternate names for

the entity for each language. The figure 1 2.3 illustrates items structure.

Figure 2.3: Data structure of item Q251 in Wikidata.

The Wikidata knowledge graph is not easily accessible by end-users because they need

knowledge of query languages such as SPARQL and a deep understanding of the un-

derlying structure of the KGs. Wikidata provides a publicly SPARQL endpoint (a web

service that accepts SPARQL queries). SPARQL is the W3C standard query language

of knowledge graphs represented in RDF. A SPARQL endpoint is an interface that

users (human or application) can access to query an RDF dataset using the SPARQL

query language. For human users, this endpoint could be a standalone or web-based

application. For an application, this endpoint takes the form of a set of APIs that a
1The figure is taken from https://en.wikipedia.org/wiki/Wikidata

https://www.wikidata.org/wiki/Q251
https://en.wikipedia.org/wiki/Wikidata

2.2. Knowledge Graphs 19

(a) Active Editors between Jan
2012 - Oct 2021

(b) The count of new pages created
between Jan 2012 - Oct 2021

Figure 2.4: Wikidata growth (Group, 2022)

connected agent can use. In fact, a SPARQL Endpoint is an HTTP presence point

capable of receiving and processing SPARQL PROTOCOL requests. SPARQL is an

HTTP-based protocol to perform SPARQL operations against data over a SPARQL

endpoint. HTTP payloads are sent using GET, POST, or PATCH methods.

The Wikidata Query Service

The Wikidata SPARQL query service (WDQS) 2 was published in 2015 as a service on

the main Wikidata website. This service was built on top of both the graph database

and the BlazeGraph 3. The service is used to query the Wikidata KG live with latency

near 60 sec (Malyshev et al., 2018b). It provides a well-documented query help 4, and a

set of predefined and helpful examples about SPARQL queries. In addition, it provides

a query builder tool integrated into WDQS, that helps people with no experience in

SPARQL language to query the Wikidata easily and fast. It also provides a feature of

visualizing the data, listing properties, producing short URLs of the query page, and

exporting results in multiple formats i.e CSV, to mention a few. Figure 2.5 shows the

WDQS use interface (UI) 5.
2https://query.wikidata.org/
3https://blazegraph.com/
4https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/Wikidata_Query_Help
5Live example of the mentioned query can be found using the following URL: https://w.wiki/4Ccz

https://query.wikidata.org/
https://blazegraph.com/
https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/Wikidata_Query_Help
https://w.wiki/4Ccz

20 Chapter 2. Background

Figure 2.5: Wikidata SPARQL query service UI with an example query

2.3 Neural Arabic Language Models

The Transformer is a newly emerged novel architecture in NLP. It was introduced to

solve the problem of sequence to sequence classification problem. It is based on the the

self-attention mechanism and was introduced by the authors Vaswani et al. in 2017, in

their popular paper ”Attention is all you need”. In this section, Arabic versions of

transforms based on BERT (Devlin et al., 2018) will be overviewed.

2.3.1 BERT

BERT stands for Bidirectional Encoder Representations from Transformer. A new

language representation model was published recently by Google AI researcher team

(Devlin et al., 2018). Unlike other NLP models (Peters et al., 2018; Radford et al., 2018)

which are unidirectional language models. BERT bridges the limitation gap in these

models by introducing an NLP model that looks at the sentence from both sides (left

2.3. Neural Arabic Language Models 21

and right). For instance, the OpenAI GPT model (Radford et al., 2018) represent the

sentence from left-to-right direction only. In this architecture, each token can attend to

the previous tokens only in the transformer (Vaswani et al., 2017) self-attention layers.

This used architecture is suitable for fine-tuning sentence-level downstream tasks and

could be unwholesome for fine-tuning downstream token-level tasks.

BERT Architecture

The BERT architecture is based on the original transformers (Vaswani et al., 2017)

implementation with only an encoder stack of layers. The BERT has mainly two

models of architecture:

1. BERT base: Identical in size with the OpenAI GPT for performance comparison

objectives. It contains 12 stacked decoder layers, with 768 hidden layers, and 12

self-attention layers, with 110M total parameters.

2. BERT large: a huge model that contains 24 stacked decoder layers, with 1024

hidden layers, and 16 self-attention layers, with 340M total parameters.

BERT Input/Output

As BERT was designed to handle many downstream tasks, to support this, the input

to the BERT model can handle one sentence and tuple of sentences, i.e (Question,

Answer) in one token sentence. BERT uses word piece embedding (Wu et al., 2016)

along with 30,000 token vocabularies. In which the first token in the sentence is a

special classification token ([CLS]) and it is used in the final hidden representation for

classification tasks. While pair of sentences are separated by a special token ([SEP]).

Each sentence in the pair of sentences is distinguished using a learned embedding asso-

ciated with each token in each sentence to indicate to which sentence the token belongs.

Hence, for every token, its input representation is calculated using the summation of

the corresponding token segments and the position embedding. Figure 2.6 illustrates

the input representation process.

22 Chapter 2. Background

Figure 2.6: BERT input representation. The input embeddings are
the sum of the token embeddings, the segmentation embeddings and the

position embeddings (Devlin et al., 2018)

BERT Pre-training

BERT model was pre-trained on two unsupervised downstream tasks (illustrated in

first part of Figure 2.7.

1. Task #1: Masked Language Model (MLM) In this task, 15% of all the

tokens in a sequence were masked by a special token [MASK] at random. To

overcome the problem of fine-tuning and training of the model, the [MASK] token

is used 80% of the time, while the rest is replaced by a random token 10% of the

time.The rest 10% are kept unchanged.

2. Task #2: Next Sentence Prediction (NSP) BERT was trained on a corpus

that has 50% of the entries are labeled with (isNext) and 50% are labeled with

(NotNext), these later sentences were chosen randomly from the corpus. This is

essential in some downstream tasks that need understanding the relation between

two sentences such as question answering (QA) and natural language inference

(NLI).

The BERT model was trained on the BookCorpus (Zhu et al., 2015) that have 800M

words, and the English Wikipedia (2,500M words) extracted from free-text only. Tables,

lists, etc are ignored.

2.3. Neural Arabic Language Models 23

Figure 2.7: Overall pertaining and fine-tuning task for BERT (Devlin
et al., 2018)

BERT Fine-tuning

Due to the BERT architecture that is mainly based on transformers, BERT can be easily

fine-tuned to accomplish many downstream tasks for natural language processing for

tasks involving single sentence or sentences-pairs. The self-attention layer is used to

encode a concatenated self-attention effectively. These downstream tasks include:

1. Classification tasks such as sentiment analysis. These tasks are similar to the

next sentence classification, in the output layer, a classification layer is added for

the [CLS] token.

2. Question Answering (QA) tasks. The BERT model takes two sequences of sen-

tences and is required to mark the answer in the second sequence.

3. Named entity recognition (NER) tasks, such as classifying the tokens of a given

sequence into predefined classes such as (date, person, location, etc), the output

vector of every token is fed into a classification layer to predict the NER label.

2.3.2 BERT Models for Arabic

In this subsection, five commonly used Arabic BERT models were overviewed.

24 Chapter 2. Background

BERT multilingual

Multilingual BERT (Devlin et al., 2018) is a pre-trained model on top of 104 languages,

including the Arabic language, and was introduced by Google research AI. The model

was trained on the largest Wikipedia (MLM) task. In this way, the model learns the

internal representation of languages in the training dataset to be used to extract useful

features for downstream tasks.

AraBERT

AraBERT (Antoun et al., 2020) is a pre-trained model specifically for Arabic language.

This model is based on the same architecture in the BERT base model (Devlin et

al., 2018), with 12 decoders, 12 attention heads, 768 hidden dimensions, and 110M

parameters. Due to the morphological nature of the Arabic language, an additional

pre-processing step is done.

In the same manner, the AraBERT model was trained on the MLM task for 15% of

the input tokens were selected for replacement. From these, 80% of the tokens were

replaced with [MASK], while 10% were replaced randomly, and 10% kept the same.

Besides, the NSP task was also employed to help the model understand the relation

between the sentences, which is vital for many downstream tasks such as QA.

To overcome the small Arabic Wikipedia dump compared to English, the authors man-

ually scraped news articles from websites. Besides, they used public Arabic corpora,

the first contains 1.5 billion words (El-khair, 2016), with 5 million articles, these ar-

ticles are extracted from 10 popular websites and cover 8 countries. The second is

OSIAN (The Open Source International Arabic News Corpus) (Zeroual et al., 2019)

and contains 3.5 million articles that span 31 news sources from 24 Arabic countries.

In total, the corpus size after eliminating duplicates is 70M sentences. Compared to

multilingual BERT, AraBERT achieved state-of-the-art results for many downstream

tasks and was much smaller in size (300MB).

2.3. Neural Arabic Language Models 25

QARiB

The authors Abdelali et al. trained 5 BERT models that differ in size from their training

sets, a mixture of formal and dialect Arabic models. The goal is to develop Arabic

dialects and social media support in addition to MSA. QARiB models achieved good

results in many tasks. The model is trained using two corpora for modern Arabic and

dialectal Arabic:

1. Arabic Gigaword 4th Edition 2: contains 9 Premium news sources. The total

data consists of 2.7 million documents and 32 million sentences (1B words).

2. Abu Al-Khair Group (El-khair, 2016): It was scrapped from news websites

from various Arab countries during the period December 2013 and June 2014.

The corpus comprises 58 million sentences (1.5 billion words).

3. Open Subtitles (Lison & Tiedemann, 2016): An aggregate collection of 2.6

billion sentences from a huge database of movie and TV subtitles in over 60

languages. The Arabic part of the collection was chosen, which compromises 83.6

million sentences (0.5 billion words). Statements are mostly conversational, and

sections of text are usually smaller in length than sentences in articles.

CAMeLBERT

CAMeLBERT (Inoue et al., 2021) is a multivariate NLP model to study the effect

of corpus size and fine-tuned tasks in the Arabic language. To achieve this goal, the

authors build four models like the following:

1. A model for the modern standard Arabic.

2. A model for dialectal Arabic.

3. A model for classical Arabic.

4. A model that combines data from the three models.

26 Chapter 2. Background

The importance of the volume of pre-training data was investigated by developing

further models prior to training for accurate aggregation of the MSA variant. The

different variants of the model were compared against each other, as well as eight

publicly available ones, and turned into five NLP tasks covering 12 datasets. The

authors took advantage of this insight to define the optimal system. Their results

showed that the AraBERTv02 (Antoun et al., 2020) excels on average and prevails in

six out of 12 sub-tasks. The CAMeLBERT-Star model came in second place overall on

average, as it prevails in four out of 12 sub-tasks.

ARBERT & MARBERT

MARBERT (Abdul-Mageed et al., 2021) is an extensive and persuasive pre-training

language model that focuses on both the Arabic dialect (DA) and Modern Standard

Arabic (MSA). To train MARBERT, the authors tested 1B of Arab tweets from a large

internal data set of approximately 6 million tweets. They included tweets with at least 3

Arabic words, based on string matching, regardless of whether the tweet contains a non-

Arabic string. That is, there are no restrictions on the Arabian Sea only. The dataset

contains 128 GB (15.6 Million) of texts. They used the same network architecture as

ARBERT (Bert’s Rule), but without the Next Sentence Prediction Goal (NSP) because

the tweets were short.

2.4 Summary

In this chapter, the needed background knowledge related to this thesis was reviewed.

In section 2.2 the knowledge graph was reviewed in general, its definition as stated in

the literature, and its most important applications in recent research. After that, a

background about Wikidata KG is presented. The services provided by Wikidata such

as the query service GUI interface are presented. While in section 2.3, we reviewed the

new emerging approaches for Arabic NLP such as BERT Arabic distributions.

27

Chapter 3

Literature Review

3.1 Introduction

Although entity linking with KGs is getting a lot of attention in many application

domains, it is still emerging in the software-related text such as requirements, bugs,

test cases, to mention a few. Available studies focus on NER as the first step in the

entity linking process. Moreover, most of the research done in software-related data

mining focuses on getting insights, such as extracting functional and non-functional

requirements from app reviews. Besides, classifying bugs from the bug repositories,

building NER tools that extract some domain-specific named entities such as app ver-

sion, API, programming languages, etc. But, to our knowledge, there are no studies

that tried to continue the task of the entity linking (EL) by linking the extracted en-

tities to their matching nodes in different KGs (i.g. Wikidata). Because of the lack

of studies that talked about named entity disambiguation for software-specific named

entities, we expand our literature review to include studies that have mentioned NER

for software-related text, such as bugs identification, and cybersecurity. Moreover, we

include studies that mentioned named entity disambiguation or linking in the cultural

heritage for both English and Arabic languages without any limitation to the target KG.

As a start, section 3.3 summaries the state-of-art approaches for NER studies for

28 Chapter 3. Literature Review

software-specific named entities. While section 3.4 shed the light on approaches fol-

lowed by the research community for named entity linking and disambiguation. In

sections 3.5, and 3.6, concept matching and word sense disambiguation summaries are

provided in a nutshell respectively.

Apart from the application domain, there are several techniques and methodologies

followed by researchers to advance the state-of-art in the field of named entity disam-

biguation and recognition. In this literature review, the related work is classified based

on the approach used into five main categories: Rule-based approaches (Section 3.4.1),

Word embedding (Section 3.4.2), Neural-based approaches (Section 3.4.3), Hybrid ap-

proaches (Section 3.4.4) and Statistical approaches (Section 3.4.5).

This chapter provides a targeted synopsis of the state-of-the-art techniques linked di-

rectly to the research problem and questions described in Chapter 1. Prior studies that

are closely related to the named entity disambiguation and concept matching will be

discussed in-depth, with a concentration on Arabic named entity disambiguation as

well as those studies that targeted the software-specific named entity disambiguation

and recognition. With an aim to reveal the gap in the previous studies regarding Arabic

NED in the SE field.

At the outset, the first section(3.2) discusses the successive stages of this research, as

these stages show exactly how the literature review was conducted to reveal the research

gap.

3.2 Planning and Conducting The Review

This section is intended to define the guidelines and protocols for how the literature re-

view will be conducted. Some steps are adopted by Kitchenham and Charters because

it provides a well-defined process for identifying, evaluating, and interpreting relevant

studies available for a given set of research questions. It facilities to summarize the

3.2. Planning and Conducting The Review 29

Figure 3.1: Literature review methodology

existing evidence concerning a technology, identify gaps in current research in order to

suggest areas for further investigation, and provide a framework/background in order

to appropriately position new research activities.

The objective of this study is to draw the landmarks of Arabic-named entity disam-

biguation in the software-related texts as an emerging research area and to conduct a

thorough overview of the work researchers has done so far. The review protocol de-

signed for this study (figure 3.1) consists of a search strategy, criteria for inclusion and

exclusion, and highlighting missing gaps. The strategy for collecting relevant research

is composed of two main elements: search terms and data sources. The potential rele-

vant research was collected from many scientific digital databases and journals. Table

3.1 illustrates the search resources used along with their URLs.

Table 3.1: Selected sources for review

Source Type URL

Google Scholar (GS) Database https://scholar.google.com/
IEEE Xplore Database https://ieeexplore.ieee.org/Xplore/home.jsp
sciencedirect Database https://www.sciencedirect.com/
Semantic Web Journal (SWJ) Journal https://content.iospress.com/journals

Inclusion/Exclusion criteria: The filtering of studies goes through multiple itera-

tive stages. Where the initial stage is to collect all relevant studies by querying online

databases using a well-constructed search string, after which the results are filtered

again according to the relevancy of the title and abstract. For those studies identified,

https://scholar.google.com/
https://ieeexplore.ieee.org/Xplore/home.jsp
https://www.sciencedirect.com/
https://content.iospress.com/journals

30 Chapter 3. Literature Review

the second round begins, based on the inclusion/exclusion criteria given in Table 3.2.

Finally, for those papers that are selected, in-depth reading is carefully expanded to

include the introduction, and the conclusion to be filtered and re-selected.

Figure 3.2: Published papers per year

Applying the aforementioned inclusion/exclusion criteria resulted in 32 research papers

that have been classified into groups based on the approach followed. The selected re-

lated work is presented in Table 3.3. Figure 3.2 shows papers distribution per published

year. According to the applied selection criteria, from the 32 studies were selected as

related work, seven studies were published in 2021, eleven studies were published in

2020, two studies were published in 2019, and six in 2018, while the rest (six studies)

span the period (2015-2017).

Table 3.3: Included related work.

Ref Article

1 Bouziane et al.,

2021

ARALD: Arabic Annotation Using Linked Data.

Continued on next page

3.2. Planning and Conducting The Review 31

Table 3.3 – continued from previous page

Ref Article

2 (Kannan Ravi et

al., 2021)

CHOLAN: A Modular Approach for Neural Entity Link-

ing on Wikipedia and Wikidata.

3 (McCrae & Cil-

lessen, 2021)

Towards a Linking between WordNet and Wikidata.

4 (Al-Hajj & Jar-

rar, 2021)

ArabGlossBERT: Fine-Tuning BERT on Context-Gloss

Pairs for WSD.

5 (El-Razzaz et al.,

2021)

Arabic Gloss WSD Using BERT.

6 (Esmeir, 2021) SERAG: Semantic Entity Retrieval from Arabic knowl-

edge Graphs.

7 (Al-Hajj & Jar-

rar, 2021)

ArabGlossBERT: Fine-Tuning BERT on Context-Gloss

Pairs for WSD.

8 (Makris et al.,

2020)

Text Semantic Annotation: A Distributed Methodology

Based on Community Coherence.

9 (Tabassum et al.,

2020)

Code and Named Entity Recognition in StackOverflow.

10 (Sakor et al.,

2020)

Falcon 2.0: An entity and relation linking tool over Wiki-

data.

11 (Banerjee et al.,

2020)

PNEL: Pointer Network based EndToEnd Entity Linking

over Knowledge Graphs.

12 (Harandizadeh &

Singh, 2020)

Tweeki: Linking Named Entities on Twitter to a Knowl-

edge Graph.

13 (Botha et al.,

2020)

Entity linking in 100 languages.

14 (Mulang’ et al.,

2020)

Encoding knowledge graph entity aliases in attentive neu-

ral network for wikidata entity linking.

Continued on next page

32 Chapter 3. Literature Review

Table 3.3 – continued from previous page

Ref Article

15 (Huang et al.,

2020)

Entity Linking for Short Text Using Structured Knowl-

edge Graph via Multi-Grained Text Matching.

16 (C. Zhou et al.,

2020)

Improving software bug-specific named entity recognition

with deep neural network.

17 (Bouziane et al.,

2020)

Annotating Arabic Texts with Linked Data.

18 (Perkins, 2020) Separating the Signal from the Noise: Predicting the Cor-

rect Entities in Named-Entity Linking.

19 (Li et al., 2019) Feature-Specific Named Entity Recognition in Software

Development Social Content.

20 (Delpeuch, 2020) Opentapioca: Lightweight entity linking for wikidata.

21 (Malyshev et al.,

2018a)

NERSE: Named Entity Recognition in Software Engi-

neering as a Service.

22 (Raiman &

Raiman, 2018)

Deeptype: Multilingual entity linking by neural type sys-

tem evolution.

23 (Sorokin &

Gurevych, 2018b)

Mixing Context Granularities for Improved Entity Link-

ing on Question Answering Data across Entity Cate-

gories.

24 (Cetoli et al.,

2018)

Named entity disambiguation using deep learning on

graphs.

25 (C. Zhou et al.,

2018)

Recognizing software bug-specific named entity in soft-

ware bug repository.

26 (Gasmi et al.,

2018)

LSTM recurrent neural networks for cybersecurity named

entity recognition.

27 (Phan et al.,

2017)

NeuPL: Attention-based semantic matching and pair-

linking for entity disambiguation.

Continued on next page

3.3. Named Entity Recognition in Software-related Text 33

Table 3.3 – continued from previous page

Ref Article

28 (Al-Qawasmeh et

al., 2016)

Arabic named entity disambiguation using linked open

data.

29 (Ye et al., 2016) Software-specific named entity recognition in software en-

gineering social content.

30 (Hadni et al.,

2016)

Word sense disambiguation for Arabic text categoriza-

tion.

31 (Alian et al.,

2016)

Arabic word sense disambiguation using Wikipedia.

32 (Gad-Elrab et al.,

2015)

Named entity disambiguation for resource-poor lan-

guages.

To organize this chapter, the selected related work was classified into categories based

on the approach used in the entity linking process. Classifying the papers into groups

helps in revealing similar and different characters of the used approach to reveal the

research gap. From those papers, we distinguished five approaches for the entity linking

process: 1. Rule-based. 2. Word embedding. 3. Neural. 4. Hybrid. 5. Statistical Models.

The majority of the research follows the neural-based approach.

3.3 Named Entity Recognition in Software-related Text

In this section, literature about software-specific named entities recognition was re-

viewed. Although each one of included studies focused on a specific domain in the

software development life-cycle, such as bugs and testing phase (C. Zhou et al., 2020;

C. Zhou et al., 2018), development phase (Li et al., 2019), security (Gasmi et al., 2018).

But they all intersect with many types (or called tags) of named entities. These tags

include but are not limited to Platform, Programming language, Software Standard,

34 Chapter 3. Literature Review

Table 3.2: Inclusion and exclusion criteria

Criteria Description
I1. A study that investigates NER/NED in the software-related domains,

or NED on the domain of cultural heritage was included.
I2. In addition to I1, a study of type empirical research, such as case studies,

surveys, experiments, and ethnographic studies is included.
I3. Studies that investigate concept matching or ontology to ontology link-

ing are included.
I4. Studies that have parts or relies on previous studies, only recent studies

were included.
I5. Studies that investigate Arabic word sense disambiguation based on the

transformers approach are only included.
E1. Studies with only abstracts are excluded.
E2. Studies with less than five pages were excluded.

I: stands for Inclusion Criteria.
E: stands for Exclusion Criteria.

and Framework. Table 3.4 presents a comparison between the related literature in

terms of the target language, the model type, the number of tags, the availability of

the code, and the availability of API. The majority of the included studies used hybrid

approaches by mixing more than one neural model such as LSTM with CRF (Malyshev

et al., 2018a) and word2vec with BiLSTM (Li et al., 2019). Only one study (Tabassum

et al., 2020) used the BERT model. The number of tags (classes) varied, and some

of the studies have targeted the high abstract software-specific named entities such as

programming language, platform, version, and so such as (Gasmi et al., 2018; Li et al.,

2019; Ye et al., 2016). While others (Malyshev et al., 2018a; Tabassum et al., 2020;

C. Zhou et al., 2020; C. Zhou et al., 2018) include deep software named entities at a

low level of granularity such as functions, OOP-public methods, OOP packages, etc.

Figure 3.3 demonstrates an illustrative example of what NER tagging is, as in this

example the word Instagram is extracted and tagged with Application, the same is for

the word Python which is tagged as a programming language, while Django is tagged

with a framework.

It is worth mentioning that all the reviewed studies that discussed extracting NER

3.3. Named Entity Recognition in Software-related Text 35

Figure 3.3: NER example

tags in the English language, while we could not find similar NER studies in the Arabic

language for extracting software-specific named entities. These studies constitute a

starting point to extend their work to support the Arabic software-specific named en-

tities extraction and continue the task of linking named entities with knowledge graphs.

Table 3.4: Software-specific NER related work

Ref. Lang. Model #Tags Code API

SoftNER(Tabassum et al., 2020) en BERT 20 3 7
BNER(C. Zhou et al., 2020) en BiLSTM-CRF 16 7 7
SFF (Li et al., 2019) en word2vec,BiLSTM 5 7 7
DBNER(C. Zhou et al., 2018) en CRF, word embeddings 16 7 7
Gasmi et al. (Gasmi et al., 2018) en CRF,LSTM-CRF 7 7 7
S-NER(Ye et al., 2016) en CRF 5 7 7
NERSE(Malyshev et al., 2018a) en CRF,LSTM-CRF 22 3 7

en: English.

NERSE (Malyshev et al., 2018a) is a service that includes deep software named en-

tities at low granularity level, with an aim to enrich the literature with more tags

compared to other studies that are limited to the higher categories of software named

entities (Gasmi et al., 2018; Li et al., 2019; Ye et al., 2016). To this extent, the authors

rely on StackOverflow as an important source for software developers to categorize

the content into 22 predefined software-specific named entities tags (Object Oriented,

Procedural, Scripting, Web Development, Other Types i.g. SQL, CPU instruction sets,

Hardware architectures, Operating systems, OOP-packages, OOP-public methods, Non-

OOP-Functions, Other-Events, Software tools, Software framework, Software libraries,

software applications, Data formats, Standard Protocols, Software design patterns, Soft-

ware acronyms, Software Roles, Software Operation). This was done using NLP and

ML techniques, using Conditional Random Fields (CRF) and Bidirectional Long Short-

Term Memory - Conditional Random Fields (BiLSTM-CRF). They used the precision,

36 Chapter 3. Literature Review

recall, f1-score evaluation metrics, and achieved (0.87, 0.82, 0.85) respectively for the

CRF model, while they achieved (0.96, 0.94, 0.95) respectively for the BiLSTM-CRF

model.

BNER (C. Zhou et al., 2018) is a bug-specific entity recognition system. The BNER

system is developed using CRF and word embedding techniques. The BNER system

makes use of the huge information found on bug repository systems that are used to

track bugs, e.g., Bugzilla. These bug tracking systems can be used as centric knowl-

edge information that can then help understand and fix these bugs. The authors of the

BNER system classify bugs into three predefined main categories (component, specific,

and general). The component category has seven subcategories (core, GUI, network,

IO, driver, file system, and hardware), according to (Tan et al., 2014), while the spe-

cific category has five subcategories according to (Ye et al., 2016). Finally, the general

category has four subcategories (defect test, common adjectives, common verb, and

mobile). The authors extracted four types of features (contextual feature, gazetteer

feature, orthographic feature, and embedding feature). To evaluate their system, the

authors established a baseline corpus on two open-source projects, Mozilla (1400 bug

reports) and eclipse (400 bug reports). The datasets were evaluated using the three

metrics (precision, recall, and f1-score) with overall accuracy that reached more than

70% to more than 80%.

The authors of the study (Gasmi et al., 2018) presented a domain agnostic NER model

that is independent of any domain-specific entities and applied this model to the cy-

bersecurity field. Compared to other studies (Malyshev et al., 2018a; C. Zhou et al.,

2018) , this model does not need domain experts to implement feature engineering.

The proposed model relies on long-short term memory LSTM and conditional random

fields (CRFs). The evaluation of the NER model was limited to seven entity types

(vendor, application, version, file, operating system, hardware, and edition) that are

closely related to the cybersecurity domain. Their model achieved 2% better accuracy

3.3. Named Entity Recognition in Software-related Text 37

of the CRFsuite (Okazaki, 2007), which is one of the most accurate CRF tools.

S-NER (Ye et al., 2016) is a named entity recognition system that is designed to clas-

sify a broad category of software entities for a broad range of widespread programming

languages, platform, libraries, API, and software standards using semi-supervised ma-

chine learning CRF model. The dataset was constructed from StackOverflow posts,

labeled and validated manually using annotators with the appropriate experience. The

brown clustering technique is also used on the StackOverflow unlabeled data to assign

words within the same context into the same clusters. To evaluate the S-NER system,

three metrics were used (precision, recall, and f1-score) and the results were compared

to a baseline system that was implemented using rule based approaches, a mix of em-

pirical lexical rules and gezzetters. The S-NER system outperforms the baseline by

30.3% , with overall f1-score 78.176%.

Later on, C. Zhou et al. extended their previous work (C. Zhou et al., 2018) by providing

an enhancement to the BNER by adopting deep learning (attention-based BiLSTM-

CRF) in combination with domain features such as POS and gazetteer feature into a

new system that they called DBNER (C. Zhou et al., 2020). This new architecture

helped them extract semantic information related to bug reports with a little feature

engineering. On the other hand, they extend the corpus from the first study to include

additional software projects, rather than Mozilla and Eclipse. Apache and Kernel were

added to achieve more comprehensiveness. The DBNER was evaluated using the

aforementioned four open-source projects. Compared to BENR, the precision, recall,

and f1-score increased by (4.5%, 4.15%, and 4.07%) respectively, while for the cross-

project experiment, the DBNER has achieved an increase in the f1-score by 5.8%.

SFF (Li et al., 2019) is a Software Function Feature specific named entity recognition

tool over the CSDN (Chinese StackOverflow). They built web crawlers to scrape the

HTML pages from the CSDN and then processed the crawled pages to extract text from

38 Chapter 3. Literature Review

the questions and their answers. They manually annotated the dataset with six types

of entities (Programming language, Platform, API, tool library framework, software

standard, and undefined function). The next stage is to process the extracted text into

a shortened sentence that has the SFF particular entity, then, slice the sentence into

words, get the words embedding using word2vec for each word. Finally, in the last

stage, the BI-LSTM model is trained to understand the boundary of the SFF-specific

entity. To solve the problem of Out-of-Vocabulary (OOV) words that are not in the

starting dataset, the authors used deep learning techniques to train the model. The

SFF-NER system was evaluated using three metrics (precision, recall, f1-score). The

overall results of the system are (74.805%, 69.019%, 71.702%) respectively.

While SoftNER (Tabassum et al., 2020) is a NER system for computer programming

entities. This system is built on BERT and trained on StackOverflow croups that have

15,372 sentences annotated with 20 fine-grained entity types (8 code-related entities, 12

natural language (NL) entities) code entities are(class, variable, inline code, function,

library, value, data type, and html xml tag). while the nl entities contain (application,

ui element, language, data structure, algorithm, file type, file name, version, device,

os, website, and user name). To address the problem of ambiguity in the software

domain, many software terms may conflict with concepts or English terms. For example,

the word ’go’, means a programing language in the software domain or an English

verb in other contexts. The authors designed the SoftNER model architecture in a

way that leverages the sentential meaning and domain-specific entities using BERT

embeedings as an input layer to extract embeddings. In addition to domain-specific

embeddings for each named entity in the sentence. Then, an extra attention layer

adds the three embeddings from the first layer for the named entity together using the

attention mechanism. Finally, a linear CRF layer is used to predict the entity class

using the embedding emitted from the previous layer. The SoftNER was trained on

152 million sentences from StackOverflow which is relatively large and diverse compared

to other NER datasets that are either small or have limited named entity types. Overall,

3.4. Named Entity Disambiguation and Linking 39

The SoftNER achieves a 79.10% f1 score on StackOverflow and 61.08% f1 score on

GitHub data on 20 software-related named entity types.

3.4 Named Entity Disambiguation and Linking

In this section, studies related to named entity linking and disambiguation are included.

3.4.1 Rule-based Approaches

Rule-based Approaches depend mainly on human hand-crafted rules, which are widespread

in machine learning (Bringmann et al., 2011). They are used to find the common pat-

tern aka regularities in data using the IF-THEN approach (Fürnkranz, 2013). In what

follows, the studies that used this approach are reviewed.

Falcon 2.0 1 (Sakor et al., 2020) is a joint entity and relation linking tool over Wikidata

that was introduced by Sakor et al. as an enhancement over Falcon 1.0 (Sakor et al.,

2019) tool that was developed to link entities over DBpedia. Flacon 2.0 tool extracts

entities and relations for English short statements especially questions and provides a

ranked list of the corresponding nodes over Wikidata. This tool is built on the previous

Falcon tool using a rule-based approach. At the recognition phase, Falcon 2.0 uses

three modules, POS for tagging, tokenization, and compounding, then, N-Gram tiling.

While, at the linking phase, the candidate list is produced to be matched and linked

to the proper node on Wikidata using relevant rule selection and N-Gram splitting.

Falcon 2.0 outperforms OpenTapoica (Delpeuch, 2020) on three different datasets

(LC-QuAD 2.0, SimpleQuestion, and SimpleQuestion Uppercase Entities)

using three metrics (precision, recall and F-score). On the other hand, since Falcon

2.0 is designed for English short statements, it is thus not applicable for large noisy

text rather than short questions. Besides, its independence from the changes made in

the knowledge graph.

1https://labs.tib.eu/falcon/falcon2/

https://labs.tib.eu/falcon/falcon2/

40 Chapter 3. Literature Review

Another study (Bouziane et al., 2021) used the rule-based approach to link Arabic-

named entities with DBpedia. This is done using NLP techniques such as tokenization,

normalization, speech, POS tagging, parsing for the input text, and machine learning to

do the NER task. The developed system consists of three main modules: (a) candidate

resources module, (b) semantic module, and (c) disambiguation module. The input

text is first normalized to correct typing errors. The named entity recognition model

is trained using the SVM (support Vector machine) a classical machine learning algo-

rithm using the dataset and the tags WikiFANEgold from the study (Alotaibi & Lee,

2014) which is extracted from Wikipedia Arabic pages. The WikiFANEgold dataset

contains 34,483 sentences and 114,632 words with 100 tags in the two-level taxonomy.

The overall system performance was measured using a 100-sentence corpus which was

manually annotated with DBpedia links, and the system achieved (0.91, 0.78, and

0.84) for the precision, recall, and f1-score respectively. This approach is based on

DBpedia KB (5 million entities) which is relatively small compared to Wikidata (98

million entities). Besides, rule-based approaches often have a lower recall, and depend

on many rules which are hard to list and need domain experts (Pellissier Tanon et al.,

2020).

3.4.2 Word Embedding Approaches

Word embedding approaches used to mathematically represents the embedding of the

words. word2vec, one hot encoding, TF-IDF and Fast-text are popular word embed-

ding methods. In this section, the studies that use this approach were reviewed.

PNEL (Banerjee et al., 2020) is a pointer network model or solving end-to-end entity

linking over Wikidata for short text. This model is inspired by the use of the pointer

network in solving the convex hull and generalizing the traveling salesman problem.

This is mainly based on word embedding and n-grams techniques. The short text is

tokenized into multiple combinations as entities are taken separately by itself, a combi-

nation of the entity with its predecessor, the entity with its successor, and finally, the

3.4. Named Entity Disambiguation and Linking 41

entity with its predecessor and successor at the same time. All of these combination are

then searched using the BM25 similarity. End-to-end forms can often enhance entity

recognition performance. Almost all of the entity binding algorithms used in industry

often use legacy entity identification methods separate from the entity binding process.

Thus, this end-to-end entity-linking approach can be beneficial. However, because of

its credence on including static graphs, extensive training will be required if Wikidata

changes. The model was trained on WebQSP, SimpleQuestions, and LC-QuAD

2.0 datasets. The achieved accuracy PNEL-L 0.803, 0.517, 0.629 for the precision,

recall, and f1 respectively.

While SERAG framework (Esmeir, 2021) is a Semantic Entity Retrieval from Arabic

knowledge Graphs. It was introduced by Esmeir and inspired by KEWER (Nikolaev &

Kotov, 2020). For every entity in a query sentence, a document is created of directly

linked textual information, then a list of random walks starts at that entity. Word2Vec

is then used to enhance the ranking such that a standard two-stage ranking approach

was used, for a given query, the first 1000 thousand entities are selected using BM25 and

then ranked using embeddings. The proposed framework was evaluated against BM25

and achieved better results in all categories (Named entity queries, IR-style keyword

queries, natural language questions, and seek a particular list of entities).

3.4.3 Neural-based Approaches

Most of the entity-linking research studies fall under this category. 56% of these stud-

ies are published between (2020-2021). Two studies (Botha et al., 2020; Raiman &

Raiman, 2018) are multilingual, the rest are proposed to solve the entity-linking for the

English named entities. Only three studies (Cetoli et al., 2018; Perkins, 2020; Raiman

& Raiman, 2018) were limited to the task of entity disambiguation. While the rest

summarized approaches in this section proposed a jointly end-to-end solution for entity

linking. Table 3.5 presents a comparison between the related literature in terms of the

42 Chapter 3. Literature Review

target language, target KG, the encoder type, the type of the proposed tool, the avail-

ability of the code, the availability of API, the usage of label aliases and the description.

Figure 3.4: General architecture for neural entity linking (Alam et al.,
2022).

Recently, deep learning approaches that are based on different types of neural networks

have emerged as a silver bullet to the research community. These methods have shifted

the performance towards a new level. The aim of this section is to provide a deep

discussion of the latest generation of models that emerged from the year 2015 till the

time of writing this thesis. Neural network models have attracted the attention of

researchers in the field of natural language processing because of their ability to under-

stand lexical semantics (Bengio et al., 2003; Collobert et al., 2011; Young et al., 2018).

Besides, neural network-based models have shown considerable advances compared to

traditional methods of machine learning (Chisholm & Hachey, 2015).

Many NLP systems use pre-trained deep language models such as Elmo (Peters et

al., 2018), BERT (Devlin et al., 2018), and their different representations. Research

in entity linking made benefits of these state-of-art-model as a method to introduce

knowledge represented in KG, and how this helps in adopting the words in the free text

to be represented to some tasks (Alam et al., 2022).

Figure 3.4 illustrates the general architecture of neural network entity linking. The

pipeline is composed of two main parts, the NER model which extracts the NE from a

free text, and the NED model that intern has two main parts, candidate generation to

3.4. Named Entity Disambiguation and Linking 43

retrieve all possible candidates of the NE from the KG, and the entity ranking model

that gives thesis possible candidates the score, the entity with the highest score is the

output from the model.

Table 3.5: Comparison between neural network-based approach related work

Ref. Lang. KG Encoder
Type Type Code API Label

Aliases Desc.

CHOLAN(Kannan
Ravi et al., 2021)

en Wikidata
Wikipedia BERT EL 3 7 3 3

Botha et al. (Botha
et al., 2020)

ml Wikidata BERT EL 3 7 7 7

Arjun et al.(Mulang’
et al., 2020)

en Wikidata Glove EL 3 7 3 7

Huang et al.(Huang
et al., 2020)

en Wikidata BERT EL 7 7 3 3

Perkins et
al.(Perkins, 2020)

en Wikidata
Wikipedia ELMo NED 7 7 3 7

Deeptype(Raiman &
Raiman, 2018)

ml Wikidata
Wikipedia

Bi-LSTM
CNN NED 7 7 3 7

Sorokin et
al.(Sorokin &
Gurevych, 2018b)

en Wikidata CNN El 3 7 7 7

Cetoli et al.(Cetoli
et al., 2018)

en Wikidata Bi-LSTM NED 3 7 3 7

NeuPL(Phan et al.,
2017)

en Wikipedia LSTM EL 7 7 7 7

Ref.: Reference, Lang.: Language, Desc.: Description.
en: English, ml: Multilingual, EL: Entity Linking, NED: Named entity disambiguation.

One of the recent studies that was puplished in 2021 is CHOLAN 2 (Kannan Ravi

et al., 2021), which is an end-to-end modular pipeline approach for entity linking.

CHOLAN is divided into two transformers, the first distinguishes different surface

forms for a specific text using the BERT model, and the second transformer is used

to classify each entity mention through a predefined nominee list. This is done by

feeding the second transformer with the entity mention generated from the first trans-

former, alongside with the local context (a sentence containing the entity-mention),

and the entity Wikipedia description as an input to the second BERT transformer

to disambiguate the entity mentions. To achieve the candidate generation module,
2https://github.com/ManojPrabhakar/CHOLAN

https://github.com/ManojPrabhakar/CHOLAN

44 Chapter 3. Literature Review

the authors experimented with two methods. The first is using Falcon (Sakor et al.,

2020) knowledge base, and the second using the component proposed by (Ganea &

Hofmann, 2017). In their study, the authors linked to Wikidata, and Wikipedia. To

link with Wikidata, the authors used the dataset named T-REx (Elsahar et al., 2018),

by adapting part of T-REx used by Mulang’ et al., 2020. It has 983,257 statements,

and linked to 85,628 distinct Wikidata entities. But, for linking with Wikipedia, the

CoNLL-AIDA dataset (Hoffart et al., 2011) was used. It has 8,448 linked entities from

946 documents. CHOLAN-Wikidata achieves (75, 76, 75.4) on (precision, recall, and

f1-score) respectively. While CHOLAN-Wikipedia achieves (83.4, 76.8, 86.8) on (pre-

cision, recall, and f1-score) respectively

Another study (Huang et al., 2020) that aims to link entities in a short text to Wiki-

data. Huang et al. introduced an end-to-end entity linking approach that consists of

three modules, the first is entity extraction similar to the NER system. In this module,

the entity extraction is a tagging problem, the BIO schema (L. Ramshaw & Marcus,

1995) is used to tag the mentions with (B: at the beginning, I: inside, O: outside).

They fine-tune the BERT model with a final hidden representation for each token into

a classification layer based on the BIO classes. The second step in their system is the

candidate search. They created ElasticSearch index from entity labels from Wikidata

and for each entity, they apply Levenshtein and the exact match edit distance that is

based on fuzzy matching. They also expanded the entity mention span by one token

to create an error-prone entity search. Then the final search results of the adjacent

mentions are added as well to the dataset. The third step is the entity ranking. In

this step, three types of information about the entity mention from Wikidata are used:

entity labels, description, and relations with other entities are used to rank entities via

a multi-grained text matching. The multi-grained text matching process is done using

many steps, the first is Character-level Similarity and achieved using CNN to measure

the similarity between the entity mention and its candidate entity label on Wikidata.

The result is a similarity matrix whose entire are calculated using cosine similarity.

3.4. Named Entity Disambiguation and Linking 45

The second is token-level similarity, in which the similarity between the text and the

candidate entity Wikidata description is measured using the BERT-base model. Third,

similarity based on Neighboring Entities is calculated to measure whether the entity

candidate matches the text context. This is done using the BERT model to get seman-

tic of the triple (subject, object, predict) of the entity concatenated to form a sentence.

All calculated measures are accumulated and fed into two-layer perception. In this

method, the Wikidata structure is integrated through the use of the entity triples in a

manner that is similar to Mulang’ et al. However, only one-hop of triples are used, and

no hyper relational information is considered.

Unlike Huang et al., 2020 who proposed a solution for short text. The authors in (Mu-

lang’ et al., 2020) 3 proposed an end-to-end named entity linking over Wikidata for

long, noisy titles using the Encoder-Decoder-Attention model for both entity recogni-

tion and disambiguation. The entity recognition is done using Glove while candidate

generation is done in the same way in (Sakor et al., 2020). While entity ranking score

is calculated using a model that takes as input the mention, entity label, and aliases.

This model does not use global ranking, as the entities are matched with its Wikidata

label and aliases. Thus it is not liable to KG change. The model is evaluated over

the T-REx dataset that contains 4.65 million documents with 6.2 million sentences

that are annotated using 11 million Wikidata triples. Their method achieved an 8%

improvement in the performance over baseline and OpentTapioca tool.

What distinguishes the tool (Botha et al., 2020) from its predecessors is that it pro-

posed a solution for multilingual named entities over Wikidata. Their model covers

100+ languages and 20 million Wikidata entities in a corpus named Mewsli-9 4. They

used two BERT encoders . The authors make use of Wikipedia descriptions of their

entities as input to the model, since, Wikidata nodes have links to Wikipedia. Wikidata
3https://github.com/mulangonando/Arjun
4https://github.com/google-research/google-research/tree/master/dense_representations_for_

entity_retrieval/mel

https://github.com/mulangonando/Arjun
https://github.com/google-research/google-research/tree/master/dense_representations_for_entity_retrieval/mel
https://github.com/google-research/google-research/tree/master/dense_representations_for_entity_retrieval/mel

46 Chapter 3. Literature Review

was a suitable KG since it is a Multilingual knowledge graph. The candidate generation

of the mentions is done using dual BERT transformers to encode the context sensitive

and the entities into the same vector space.

Perkins, 2020 as well introduced an entity linking tool over Wikidata. The NER part

is done using the LSH algorithm and link frequency for entity labels. For those named

entities recognized from the first step, the authors treated the entity linking as a clas-

sification problem, that is, for each candidate entity in the candidate list, the model

classifies whether it is the true candidate for the named entity. This is done using

deep learning techniques, as the context embedding is fed into the ELMo model, and

the output is concatenated with the knowledge graph embeddings, to be then fed to

a feed-forward-neural-network which intern maps the context embedding and the KG

embedding as the final output.

While Deeptype (Raiman & Raiman, 2018) is another entity linking system on Wiki-

data that followed a novel approach in that it uses type information via Wikidata or

Wikipedia. This system integrates symbolic information into the logic procedure of a

neural network with a type system. In the first step of DeepType, the optimization is

done using stochastic optimization.

Cetoli et al., 2018 5 used deep learning to solve the entity linking problem over Wiki-

data. The method takes text and graph embeddings. They used Bi-directional Long

Short-Term Memory (Bi-LSTM) encoding of the graph triplets. While text embeddings

are calculated by applying a Bi-LSTM over the Glove embeddings of all words in the

text. It assumed that the candidate is available, so there is no candidate generation

module in their work.

While in the authors in the study (Elnaggar et al., 2018) tried to solve the entity linking
5 https://github.com/contextscout/ned-graphs

https://github.com/contextscout/ned-graphs

3.4. Named Entity Disambiguation and Linking 47

problem by transfer learning. They reused an open-source deep learning model that

was built for similar tasks. The selection criteria of the model depend mainly on the

f1-score and accuracy of the model. This model consists of three main parts. 1. the

word embedding of the entities. 2. the context score is calculated based on the sentence

containing the entity. 3. CRF model with parametrized potentials to disambiguate the

entities. The authors defined the entity context with the left and right 100 words

around the entity mention. But to avoid noise, the used algorithm only counts for the

top 20 words from the entity context. The achieved f1-score is 98.90% and 98.01% on

the legal small and large test datasets respectively.

Although there are many off-the-shelf named entity recognition (NER) tools freely

available, Sorokin and Gurevych in their study (Sorokin & Gurevych, 2018b) targeted

the question-answering (QA) text that did not find a suitable tool for short and noisy

questions, this limitation motivates the authors to build entity linking tools that cor-

respond With data needs. To do this, they made a single-stage system that performed

the task of entity linking over Wikidata into a single model. The tasks of demonstrating

entity recognition and disambiguation are performed in a single joint end-to-end neural

network that operates at multiple context levels and does not depend on the manual

features. They overcome the problem of noisy data by handling each level of granu-

larity in a separate n-gram model. The levels include a high feature that is handled

using token level using a dilated convolutions neural network model, whereas, low-level

features are handled using character level dilated convolutions neural network of the

entities n-gram. For each generated token, the Wikidata KG is searched to collect

candidate matches. The best match is subsequently found by calculating the rating

and entity score for each possible token. Their code is publicly available 6 as well as

the datasets. Their entity linking system achieves state-of-the-art results with an 8%

improvement in performance compared to previous QA systems.

6https://github.com/UKPLab/starsem2018-entity-linking

https://github.com/UKPLab/starsem2018-entity-linking

48 Chapter 3. Literature Review

NeuPL (Phan et al., 2017) is a deep neural network entity linking and disambigua-

tion model. NeuPl measures the semantic matching between the context of the entity

mention and the target entity by employing the long short-term memory (LSTM) and

attention mechanism for entity disambiguation. Moreover, NeuPl introduces a fast

Pair-Linking algorithm by scanning the pairs of mentions at most once in the whole

document and takes into account positional information and word order. Therefore,

two LSTM networks are used for left- and context-modeling. The model was trained on

several datasets, namely, Reuters128, ACE2004, MSNBC, DBpedia Spotlight

(DBpedia), RSS500, KORE50, Microposts2014 (Micro2014). The average ac-

curacy among all datasets is 0.851%. Unlike transforms-based models such as BERT,

LSTM is capable of capturing dependencies in one direction (Devlin et al., 2018).

3.4.4 Hybrid Approaches

In this subsection, articles that used hybrid approaches were discussed deeply. Only

two articles (Al-Qawasmeh et al., 2016; Gad-Elrab et al., 2015) have proposed NED

solutions, one study (Al-Qawasmeh et al., 2016) of them targets Arabic, whereas the

other is multilingual. While, only two studies have proposed an end-to-end entity

linking solution (Bouziane et al., 2020). Table 3.6 presents a comparison between the

related literature in terms of the target language, target KG, the approach used, the

type of the proposed tool, the availability of the code and the availability of API.

Hybrid approaches combine the advantages of both rule-based and learning-based ap-

proaches. The final result in this approach is achieved by adding more than one machine

learning technique together or using machine learning with handcrafted rules. Several

hybrid named entity disambiguation and recognition tools were introduced.

Bouziane et al., 2020 used NLP techniques such as tokenization, normalization, and

POS to implement the Arabic entity linking system to DBpedia labels and Wikidata.

3.4. Named Entity Disambiguation and Linking 49

Table 3.6: Comparison between hybrid approach related work

Ref. Lang. KG Approch Type Code API

Bouziane et al. (Bouziane et al.,
2020)

ar DBpedia, Wikidata NLP EL 3 7

Tweeki(Harandizadeh & Singh,
2020)

en Wikidata Spacy EL 3 7

Gasmi et al. ANED(Al-
Qawasmeh et al., 2016)

ar DBpedia NLP NED 7 7

Gad et al.(Gad-Elrab et al., 2015) ML YAGO3 NLP NED 7 7

en: English. ar: Arabic ML: Multilingual.

The proposed system takes Arabic text as input and combines two main modules, the

first is a candidate resource that split the sentences and does tokenization and nor-

malization of the words. Then, the candidate resources are identified from nominal

phrases. Then, SPARQL query is used to retrieve the URI regarding DBpedia based

on the rdfs:label. The system was evaluated on a small corpora (100 sentence labeled)

with a precision of 0.86, a recall of 0.73, and an F-measure of 0.79. The authors did

not illustrate the disambiguation technique when multiple results are returned from

the SPARQL query.

Another tool that was designed for entity linking of tweets called Tweeki7 (Haran-

dizadeh & Singh, 2020) is an unsupervised tool for short text entity linking on Wikipedia.

The ER part is implemented using a pre-existing tool (Gardner et al., 2018) that is

based on a neural entity linking system (Spacy) to find a set of possible candidates in W

�ikidata and then find the best one based on the type’s compatibility (between NER and

named entity linking (EL) systems). While the selection in the ED part was based on

some rules definition. This was implemented by first creating the potential candidates

and then calculating the probability of each candidate among Wikidata aliases. This

is done using the Intrawiki (Ratinov et al., 2011) crawl that harvests anchor links over

Wikipedia. To adjust this tool to Wikidata, the existing links between the two KGs

(Wikipedia, Wikidata) are used to gather information about the entity aliases, labels

and description, and the number of times the alias is used in Wikipedia. However,

the module of candidate generation ignores the context of the mention in its original
7https://ucinlp.github.io/tweeki/

https://ucinlp.github.io/tweeki/

50 Chapter 3. Literature Review

tweets. To overcome this problem, the authors combine it with entity type filtering

which then produces the right score probability of the link. The tool was evaluated

over two datasets (TweekiData and TweekiGold).

ANED (Al-Qawasmeh et al., 2016) is a proposed tool for Arabic named entities dis-

ambiguation. This tool is built over an enhancement of the hybrid approach that is

proposed in (Al-Smadi et al., 2015). The authors built an ANED ontology to overcome

the limitation of knowledge bases that support Arabic entities linking. This ontology

was designed to represent Arabic entities mainly Person, Location, and Organization.

While its properties are based on Wikipedia info-box metadata and human modeling,

the enhanced approach consisted of seven steps and uses query label expansion and

text similarity techniques to disambiguate three types of entities (Person, Location,

and Organization) over Wikipedia. The authors used contextual disambiguation, by

extracting content from wiki pages and using a small window around the entity mention

(3 before and 3 after), and counting the vector of term entities frequency in each can-

didate. Then, the highest total term frequency is selected. To evaluate their work, the

ANERcorp12 corpus was used, which is manually annotated with URIs and entity

types. The overall accuracy achieved 84%. Unlike Bouziane et al.; Esmeir, the authors

intruded only the NED component to disambiguate limited entity types to Wikipedia.

Another multilingual tool (Gad-Elrab et al., 2015) that targets poor resource languages

in general, including Arabic. The tool consists of three steps necessary for the NED

process: NED Catalog: The authors have used the same approach from (Yosef et al.,

2014) study to build a NED methodology for the proposed language, so they combined

the English and the Language under test Wikipedia’s to capture famous entities from

the English language with local entities of the Language under test. Named-Entity

Dictionary: To extend the name entities of the proposed systems, the authors have

proposed three approaches: External Resources: This is done by excerpted an-

chor texts that are written in the language under test using Google word-to-concept

3.4. Named Entity Disambiguation and Linking 51

(GW2C) repository which intern link to the Wikipedia article. Those extracted names

were further automatically processed to be filtered and cleaned. Statistical Machine

Translation: The authors developed a Type-aware machine translation to translate

English entities to corresponding Arabic that is trained on the character level using

a parallel set of entity names. Entity Description: The standard approaches were

used to extract contexts Wikipedia Anchor text, Wikipedia Categories, titles, and pages

linking to the entity. As most of the data is available in English, the authors used Sta-

tistical Machine Translation to translate categories. The methodology was evaluated

on LDC2014T05 and LDC news document. The average precision, and non-null

entity precision as follows (73.23, 71.34, 94.69) respectively. The results of the LDC

web dataset average precision, and non-null entity precision as follows (68.16, 60.10,

93.86) respectively.

3.4.5 Statistical Approaches

In this subsection, The paper that fall under this category used mathematical models.

OpenTapioca 8 (Delpeuch, 2020) is a lightweight end-to-end entity linking system

that is trained on Wikidata KG, it adapts a heuristic-based model of three approaches

for Entity disambiguation of named entity mentions in a text to Wikidata. The three

approaches are (Local compatibility using Bayesian methodology, Topic similarity us-

ing a bag of word model, Mapping coherence using random walk. This system works on

three Entity types (humans, organizations, and locations). The system was evlauated

on the RSS-500 dataset. ISTEX. The height accuracy achieved is 0.870%

8https://opentapioca.org/

https://opentapioca.org/

52 Chapter 3. Literature Review

3.5 Ontology Concept Matching

An ontology consists of concepts and relationships between them (Jarrar, 2005; Jarrar

& Meersman, 2008). The problem of linking between two ontologies is similar to the

problem of linking between two knowledge graphs. In this section, the literature related

to ontology concept matching is discussed. Research that focused on linking different

knowledge bases nodes that refer to the same concept.

To link WordNet and Wikidata, in their study (McCrae & Cillessen, 2021), the authors

used the hapax linking and natural language processing. They focused on linking the

elements on the two resources that only accrue ones in a single noun synset in the

Wordnet and a corresponding unique label in Wikidata. This concept was called hapax

legomenon. To reduce a large number of links and increase the precision, the authors

took the following heuristics into consideration before evaluation. First, the Wikidata

entities with Q number over 10,000,000 are considered less significant and unlikely to

be mentioned in English WordNet. Second, All entities that have a Wikipedia dis-

ambiguation page or Wikimedia disambiguation page were filtered out. Finally,

All entities whose definitions follow the pattern of 1-3 words followed by the word [by]

and then 1-4 words were filtered out and excluded.

As mentioned earlier, the hapax linking matches only resources that do not have dis-

ambiguation, but in order to achieve the complete linking by including resources that

they disambiguate, the authors extended their methodology by using the Naisc system

(McCrae & Buitelaar, 2018). The first step is to collect relevant facts about the Word-

Net concepts, such as definitions, labels, and synset links. And from the Wikidata, the

English labels, the definitions were also extracted and the links between the synset.

Then the same set of heuristics aforementioned was applied in order to prepare the data

for the Naisc methodology that consists of the following steps: The hapax links were

identified and accepted. The definitions were compared using the Jaccard similarity

3.5. Ontology Concept Matching 53

at both the word-level and character-level. The similarity of each element was analyzed

based on the Personalised Page-Rank PPR algorithm, using the Fast-PPR implemen-

tation. The three scores’ results were normalized in the range [0,1] using percentile

ranking. A simple average of the three scores (character-level Jaccard, word-level Jac-

card, and PPR) was used to rank each potential match. The bijective assumption,

that each entity in the WordNet has only one corresponding match in Wikidata was

used. This assignment problem was solved using the Hungarian Algorithm, but due to

the large dataset, a simple greedy algorithm was used. The evaluation job is assigned

to two annotatort to validate the 100k links predicted by their system. The agreed

accuracy between them ranges from (65-66 %) with a Cohen’s Kappa equals to 0.934

of the automatic linking.

The authors in the study (McCrae, 2018) aims to link concepts in the WordNet with

Wikipedia articles that describes that matched concept. This was done by creating a

gold-quality mapping between all concepts (7,742) in the WordNet and the Wikipedia

with an aim to introduce a gold standard link discovery.

While the study (Hadni et al., 2016) used the knowledge-based method to word sense

disambiguation. Their methodology starts from prepossessing a corpus text, then ex-

tracting the local context using bag-of-words (BoW), after that Words are mapped into

concepts using Arabic WordNet (AWN). If the matching is found, the Arabic WSD

based similarity measures are calculated, then a term to term Machine Translation

System (MTS) from Arabic WN to English WN. But if there are matching concepts

in AWN, a translation from AWN to WN is performed and the mapping is done by

searching the corresponding concepts in the WN. The closest concept is based on the

semantic similarity scale. After that, these concepts will be translated into Arabic us-

ing MTS and the text document is represented as a vector of concepts.

Alian et al., 2016 presented a new approach to demystifying Arabic words by using

54 Chapter 3. Literature Review

Wikipedia as a lexical source for demystification. The closest context to the fuzzy

word is determined using two techniques, the vector space model and cosine similarity

between the word context and senses retrieved from Wikipedia. Three experiments

were performed to evaluate the suggested approach, in which the two experiments used

the first sentence retrieved for each meaning from Wikipedia, but they used a different

vector model for space while the third experiment uses the first paragraph of meaning

was retrieved from Wikipedia. The results of the experiments showed that using the

retrieved first clause is better than using the retrieved first sentence and that using the

Tf-Idf VSM is better than using the initial frequency VSM.

Because of the (BoW) limitations (Zhao & Mao, 2017) in modern applications, (Makris

et al., 2020) presented a new supervised knowledge-based approach that uses commu-

nity discovery algorithms for textual annotation with Wikipedia entities, establishing

an unmatched concept of community cohesion as a measure of local contextual cohe-

sion fit. This methodology was an empirical evaluation that revealed deeper inference

on the connectedness and cohesion of the local in the Wikipedia graph generally holds

significant improvements by focusing on improving the accuracy of less common an-

notations. The suggested approach is convenient for vast adoption, achieving strong

demystification performance.

3.6 Word Sense Disambiguation

The word sense disambiguation task aims to differentiate words’ meanings (senses)

from the context of the word. This process is similar to named entity disambigua-

tion but differs in the fact from the disambiguation process with the latter is using

knowledge graphs. In this domain, we explore the most recent papers in this sense and

what approaches are followed by the authors to achieve this uneasy task. This section

includes the most recent literature related to word sense disambiguation for the Arabic

3.7. Highlight the Research Gap 55

languages and based on using the transformers-based approaches.

ArabGlossBERT (Al-Hajj & Jarrar, 2021) treated the WSD task as sentence pair

binary classification problem. The dataset consists of ∼167k pairs, i.g., context-gloss

positive and negative pairs which were extracted from the Arabic Ontology (Jarrar,

2011, 2021) and the Lexicographic database at Birzeit University (Jarrar, 2020; Jarrar

& Amayreh, 2019a). The dataset was split into training and testing. The test set was

selected such that, every pair in the test set should not appear in the training set.

Three versions of the Arabic pre-trained BERT model were fine-tuned to accomplish

this task. The authors achieved promising results with an accuracy of 84%.

Similar approach is used in (El-Razzaz et al., 2021). The authors fine-tuned two Arabic

BERT models on a relatively small dataset of pair-gloss. The dataset consists of 5k

lemmas, with balanced labels (15k True, 15k False). Their approach achieved 89% on f1

score. However, as mentioned in (Al-Hajj & Jarrar, 2021), the accuracy of this research

is not reliable. The authors Al-Hajj and Jarrar have repeated the experiments done in

(El-Razzaz et al., 2021) to interpret the f1 result, but they found that the majority of

the sentences that were used in the testing phase, were also used in the training phase

of the experimentation.

3.7 Highlight the Research Gap

In this section, we highlight the research gap from the reviewed papers. Moreover,

challenges and open issues in the software-specific named entity disambiguation in the

Arabic language are reported for future insights and directions.

• Systems that are built using a rule-based approach often rely on domain ex-

perts that manually handcrafted rules and dictionaries. They are domain-specific

and hard to apply to other domains. Besides, they are slightly costly and not

portable. Furthermore, they need human expertise along with programming skills

56 Chapter 3. Literature Review

and knowledge in the language (Sarawagi, 2008). Because of that, rule-based ap-

proaches are outdated nowadays. Researchers shift to machine and deep learning

approaches. In the time period of this study, only two studies (Bouziane et al.,

2021; Sakor et al., 2020) adapted this technique.

• Most of the Arabic NED literature targets knowledge bases derived from Wikipedia,

such as DBPedia, and Yago. In these databases, information is gathered auto-

matically by harvesting information from the infoboxes and categories located on

Wikipedia pages, which are not editable. Wikidata, which is a Multilingual data

graph that is editable, has recently obtained a reputation as a target database

for entity linking (Delpeuch, 2020). For the Arabic language, only some studies

have taken into consideration linking entities to Wikidata.

• NED is a challenging process as there are many entities that can have more than

one type depending on its context and the morphological richness of the language.

For example, the word Jaguar can be referred to as an animal, Car brand, or a

movie name (Al-Qawasmeh et al., 2016). This process gets harder when it comes

to the Arabic language due to many reasons, some of which is related to the

nature of the Arabic language itself, as the Arabic language is a complex rich

morphological language, ”there is no capitalization, agglutination, optional short

vowels, free word order, lack of uniformity in writing style” (Al-Smadi et al.,

2019). The second major reason that makes named entity recognition harder is

the lack of resources for the Arabic language, in addition to the lack of benchmark

datasets for evaluation purposes (Darwish et al., 2021).

• When it comes to software-specific named entity linking , there are no studies

that propose nor introduce a mechanism or a technique to link named entities in

this to any knowledge graph, although some studies (C. Zhou et al., 2018) have

mentioned using KGs as a way of entity disambiguation in this field. (Li et al.,

2019; Sorokin & Gurevych, 2018b; Tan et al., 2014; Ye et al., 2016; C. Zhou et al.,

2018) have introduced NER systems for software-specific named entities.

3.8. Summary 57

• There is a lack of annotated datasets for the Arabic language. This is due to the

lack of research on this field in the Arabic language especially Wikidata. Only

one study (Bouziane et al., 2020) targeted the NED on DBpedia and Wikidata.

Moreover, as mentioned before, all research done on Arabic NED targeted culture

heritage with the main focus on three entity types (Person, Location, Organiza-

tions). This adds an extra challenge towards creating domain-specific data to

include new entity types that serve our purpose to disambiguate entities related

to the software-specific entities, such as programming languages, versions, etc.

• Although most of the studies that proposed solutions to entity linking for the

English language have clearly adopted deep learning algorithms such as BERT,

studies that proposed solutions for the entity linking in the Arabic language are

way behind as they still adopt traditional artificial intelligence techniques and

rule-based approaches. Transformers-based models such as BERT have revolu-

tionized the NLP research since BERT can understand the semantics of words.

This, in turn, encouraged us to adopt applying the transformers-based approaches

(mainly BERT) to address the research problem.

3.8 Summary

In this chapter, we have introduced a literature review of named entity linking and

concept matching landscape. In section 3.2 we illustrated the methodology of conduct-

ing this literature review in detail. This study follows the (Kitchenham & Charters,

2007) guidance. The search strategy, search strings, online data sources were discussed

and documented carefully. While in section 3.2, the inclusion and exclusion criteria

related to this study were made clear. We followed our literature review by discussing

the state-of-the-art methodologies applied in entity linking divided by the approach fol-

lowed. While, the research gap, challenges, and limitations were discussed thoroughly

in section 3.7. Table 3.3 summarizes the selected related work, while Tables 3.5 give a

58 Chapter 3. Literature Review

quick comparison of the work done by each group of papers that belongs to the same

group.

59

Chapter 4

Research Methodology

The literature review in the previous chapter highlighted the gap in named entity

disambiguation and linking for the Arabic language. Recall that we highlighted the

research gap in chapter 3, section 3.7. The studies that proposed solutions for named

entity disambiguation for Arabic language used classical machine learning techniques

and rule-based approaches. However, rule-based approaches depend on domain experts;

Hence, they are very costly. Moreover, most of the studies linked extracted named

entities to KGs that are derived from Wikipedia, such as DBpedia and Yago. The

major concern with these KGs is that they are not editable. In this research, we aim

to bridge this gap and build on previous efforts by introducing two Arabic corpora.

In this chapter, our research methodology is presented. Section 4.1 illustrates the

entity disambiguation and linking process. Section 4.2 justifies the need for annotated

corpora. Sections 4.3 and 4.4 present our two annotated corpora, Wojood-NED and

WikiGlossContext, respectively.

4.1 The Entity Disambiguation and Linking Process

In this section, we overview the general design of the named-entity disambiguation and

linking components: (1) the NEL tagging component, (2) the entity lookup component,

and (3) the named entity disambiguation component. In what follows, we give a quick

overview of each component; the full details of the NEL and the NED are presented in

60 Chapter 4. Research Methodology

Figure 4.1: The presented architecture has three main components : i)
NER Tagging that extract named entities from a free-text ii) Candidate
Lookup returns all possible candidates for a given ambiguous named
entity iii) Entity Disambiguation: BERT-based transformer model to

choose the suitable named entity from a set of candidates.

separate sections 4.3 and 4.4, respectively. The candidate lookup component will be

presented in chapter 5.

1. NEL tagging: The main functionality of this component is to extract named

entities from a free text. The acronym NEL will be used in the thesis to denote

our named entity lookup component. Building the NER tagging model is beyond

this thesis’s objectives. We did not fine-tune the BERT model for the NER

task. But to achieve our goal, we used Wojood, a NER API developed at Birzeit

University (Jarrar et al., 2022) 1. Nevertheless, as Wojood does not support
1The model is deployed at the following URL as a web service https://ontology.birzeit.edu/Wojood/

https://ontology.birzeit.edu/Wojood/

4.1. The Entity Disambiguation and Linking Process 61

software-specific entities, we extended the Wojood corpus by annotating part of

it (Quora module) with six additional software-specific tags that are commonly

used in the software-related text, such as bugs and testing phase (C. Zhou et al.,

2020; C. Zhou et al., 2018), development phase (Li et al., 2019), security (Gasmi

et al., 2018) The new tags are used for evaluation purposes only in this thesis.

Then, we will train a new NER BERT model on the new corpus as future work.

Generally, the NER model takes a sentence as input, and for each word in the

sentence, the model recognizes a tag to which the word belongs. As shown in

Figure 1.1, سيجنال) /Signal) was recognized as an application (B-App).

2. Candidate lookup: Candidate lookup is also known as ”candidate generation”

or ”mention detection”. The goal of this component is that, given a search query,

the component returns all possible candidate nodes from Wikidata. We need

this lookup component because a named entity (e.g سيجنال /Signal) could be also

written in different forms سيجنل) /Signal, سيغنل /Signal, سيغنال /Signal). The goal

is to find all possible nodes in Wikidata that have similar forms - although they

may have different meanings (see Figure 1.1). The input to this component is a

named entity (i.e., search query), and the output is a list of all candidate Wikidata

nodes.

To implement the candidate lookup component we downloaded the Wikidata

dump and for each Arabic Wikidata node, we extracted the first sentence from

Wikipedia (as both are connected to using the site-links) - similar to the methodol-

ogy followed by (Sakor et al., 2020). Then we install the Elasticsearch framework

(Kuc & Rogozinski, 2013) and fine-tuned the query to enable proper and effective

lookup (the details of the candidate lookup component are presented in chapter

5, sections (5.3, 5.4, and 5.5)).

3. Entity disambiguation and linking: The goal of this component is to select

the correct Wikidata node from a set of candidate nodes. That is, given a named

entity in a sentence, our goal is to select the corresponding entity (i.e., node)

62 Chapter 4. Research Methodology

from the Wikidata knowledge graph - from a list of candidate entities retrieved

by the previous candidate look-up component. As illustrated in Figure 4.1, the

first component recognizes the named entity سيجنال) /Signal) in a sentence, then

the second lookup component returns a set of candidate nodes from Wikidata.

This third component decides (i.e., disambiguates) which of the candidates is

the correct Wikidata nodes. It returns the node Q_identifier (Q19718090). Al-

though entity disambiguation and entity linking might be addressed as different

problems, we consider them as one problem in this thesis. This is because the

disambiguation of a named entity is to find the corresponding Wikidata node, and

as we know the node URL (i.e., the Q_identifier) then disambiguation becomes

the same as linking.

As mentioned earlier in the section (3.4), researchers followed different approaches

to tackle entity disambiguation. Some used rule-based approaches (Bringmann

et al., 2011; Fürnkranz, 2013), others used word embeddings (Banerjee et al.,

2020; Esmeir, 2021), statistical approaches (Delpeuch, 2020), transformers-based

approaches (Cetoli et al., 2018; Perkins, 2020; Raiman & Raiman, 2018), and

hybrid approaches (Al-Qawasmeh et al., 2016; Bouziane et al., 2020; Gad-Elrab

et al., 2015). The most recent research has used transformers-based approaches

such as BERT, Glove, Elmo, and Bi-LSTM. In this thesis, we will experiment

with different Arabic BERT models (science BERT (Devlin et al., 2018) is state-

of-the-art) in order to evaluate the best-performing model for the sentence-pair

classification task. This is similar to (Kannan Ravi et al., 2021), which used

an architecture based on BERT for the NED task to link entities in the En-

glish language with Wikidata and Wikipedia, and treated the NED problem as

sentence-pair classification problem. That is, our entity disambiguation problem

is transferred to a sentence-pair binary classification problem, and hence, the suit-

able BERT architecture will be used (as illustrated in Figure 4.1). The special

[CLS] token at the final layer which produces raw predictions will be fed into a

4.2. The Need For Annotated Corpora 63

ranking system using a soft-max layer to convert raw predictions into probabili-

ties for each of the two classes (True, False) and a ranking system will determine

which of the fed pairs have the maximum probability of the class True.

4.2 The Need For Annotated Corpora

Arabic is considered a poor-resource language (Haff et al., 2022; Jarrar et al., 2017) and

lacks annotated corpora suitable to train the models needed to accomplish the NER

and NED components. Based on the literature review in chapter 3, we were unable

to find corpora annotated with Arabic software-specific tags. Besides, there are a few

available benchmark datasets for the sentence-pair binary classification tasks. Only a

small dataset of gloss-context pairs was used in (El-Razzaz et al., 2021), which includes

about 5k lemmas (15k positive, and 15k negative) pairs. A larger dataset described

in (Al-Hajj & Jarrar, 2021) contains 167k pairs of gloss-context labeled pairs (26k

lemmas with 33k glosses), extracted from 150 lexicons at Birzeit University (Jarrar

& Amayreh, 2019b). However, the glosses in this dataset define linguistic concepts

rather than named entities. To overcome the aforementioned limitation, two corpora

(Wojood-NED, and WikiGlossContext pairs) were built. The details for building and

annotating each of the corpora are presented in the following sections.

4.3 The Wojood-NED Corpus

This section presents the Wojood-NED corpus, which is part of the previously an-

notated Wojood corpus (Jarrar et al., 2022), then enriched with additional types of

named entities. We took about ~50k tokens from Wojood, those that were originally

extracted from Quora (a discussion form about software-related issues), and annotated

using 21 classes of entities. We used this part of Wojood (we call it Wojood-NED) to

64 Chapter 4. Research Methodology

enrich with more types of entities and link with wikidata2. In addition to the 21 classes

of entities, we introduced six software-specific classes (listed in Table 4.1). Moreover,

named entities in this corpus were manually linked with their corresponding Wikidata

Q-identifier. In the following sub-sections, 4.3.1, and 4.3.2, we present the details of

Wojood-NED tagging and linking with Wikidata. These details contribute to answer-

ing the research question RQ1b that stated:(Given the lack of annotated Arabic

corpora (i.e. datasets labeled with software-specific named entity classes) in

the software-related aspects, what software-specific named entity classes are

required to enable understanding the semantics of these named entities?)

by illustrating the process of Wojood-NED corpus tagging and linking.

4.3.1 Software-specific NEL Tagging

The named entitiy lookup (NEL) tagging process aims to manually label the named

entities mentioned in the text. The Wojood-NED corpus consists of 2,650 sentences,

with 50,449 tokens that are already labeled with 21 nested tags. However, for the sake

of our research, we introduced new six software-specific tags (listed in Table 4.1), which

are not supported by Wojood. We used these tags to manually annotate the corpus

for evaluation purposes. As we did not fine-tune a new BERT model that is able to

recognize software-specific tags. These new six tags are inspired by previous research,

especially (Li et al., 2019; Ye et al., 2016; C. Zhou et al., 2020; C. Zhou et al., 2018).

2The Wojood-NED corpus, which is part of Wojood, was crawled from Quora by the author of

this thesis and then given to the Wojood authors to annotate manually with 21 tags. Before crawling

Quora we referred to the robots.txt file (https://www.quora.com/robots.txt). We also contacted the

Quora team for permission via (https://help.quora.com/hc/en-us/requests/new) as robots.txt file noted

(“If you operate a search engine and would like to crawl Quora, please please visit our contact page

<https://help.quora.com/hc/en-us/requests/new>. Thanks.”) Please note that only public questions

and answers are crawled, we didn’t gather sensitive information about users who posted the questions

such as usernames. In addition, many studies use the same technique and crawl public data from

websites such as news, and QA websites.

https://www.quora.com/robots.txt
https://help.quora.com/hc/en-us/requests/new

4.3. The Wojood-NED Corpus 65

We limited the choice of the software-specific named entities to the six mentioned types

due to three reasons. Firstly, the Arabic language is not used at the level of software

development programming languages. Hence, it is not suitable for fine-grained named

entities, such as functions, libraries, data types, etc. Secondly, the Wojood-NED corpus

as mentioned earlier is taken from a software-related discussions on Quora. The data

nature directed the selection of the tags since the corpus is rich in the selected six tags

mentioned in Table 4.1. However, new tags can be introduced if necessary, according to

the use case available at hand, and if there is a new source of data that is rich with the

newly introduced named entities. Finally, to our knowledge, this is the first study that

extracts Arabic software-specific named entities, with an aim to understand technical

software-related documents such as SRS, app reviews, user stories, etc.

Table 4.1: Software-specific named entities description

Named Entity Start Tag Inside Tag Description

Programming Language B-PL I-PL Programming Languages like
java, c#,c++

Platform B-PLATFORM I-PLATFORM Paltforms and OSs like win-
dows, Linux, Android, and
x86.

Application B-APPLICATION I-APPLICATION software applications like In-
stagram, Facebook, and What-
sapp.

Framework B-FRAMEWORK I-FRAMEWORK Software tools, programming
libraries, like MS Word,
flask, Bootstrap, and software
servers.

Programming Paradigm B-PP I-PP The method used to group pro-
gramming languages based on
the programming style. For ex-
ample OOP, Functional, etc.

Software Standard B-SD I-SD like data format, JSON,
HTML, and CSV.

Each token in the corpus was manually tagged using the IBO2 format (L. A. Ramshaw

& Marcus, 1999) for nested tags, viz. an entity begins with B (Beginning) tag. If the

entity has more than one token then the second and the following words are tagged with

an I (Inside) tag. The O (Outside) tag is used for each word that does not belong to any

of the predefined classes of entities. In the example shown in Table 4.2), جافا Java/لغة

language is tagged with programming language (PL). The first word is marked as B-PL

and the subsequent word جافا /Java is marked as I-PL. Words like ,learn/تعلم مع /with,

66 Chapter 4. Research Methodology

and environment/بيئة are marked with O since they are not named entities. The second

sentence in the Table illustrates nested named entities which are defined as entities

that are embedded inside another entity. In this case, both entities are annotated with

the proper tag sorted from outside to inside. For example, أكاديمي خان /Khan Academy

is first tagged with B-WEBSITE then B-PERS because the B-WEBSITE is the outside

entity (top-most entity).

Table 4.2: �Words with tags example

Word Tag
تعلم /learn O
لغة /programming B-PL
جافا /Java I-PL
Java B-PL
مع /with O
بيئة /environment O
التطوير /development O
Android/أندرويد B-FRAMEWORK
Studio/ستوديو I-FRAMEWORK
android B-FRAMEWORK
studio I-FRAMEWORK
مثل /like O
Khan/خان B-WEBSITE B-PERS
Academy/اكاديمي I-WEBSITE
or/او O
اكاديمية /Academy B-WEBSITE
حسوب /Hasoub I-WEBSITE

As a result, there are 27 classes of entities in the Wojood-NED corpus, which are the 21

classes in the original Wojood, and the six tags we introduced in this research. Figure

4.2 illustrates the sentences distribution lengths parentage. The median length of the

sentences is 14 tokens, while the mean percentage of the lengths of the sentences is 19

tokens per sentence.

Table 4.3 lists each of the seven classes of software-specific named entities with the

number of occurrences in each class. The WEBSITE class is the most frequent in

the corpus with 562 entities, followed by the programming language (PL) class with

4.3. The Wojood-NED Corpus 67

Figure 4.2: Sentences distribution

Table 4.3: Counts of the flat, nested, and total of software-specific
entities in the Wojood-NED corpus.

Tag Count Flat Count Nested Total Wikidata links

PP 28 0 28 28
PLATFORM 41 1 42 42
APPLICATION 50 0 50 34
SD 92 0 92 89
FRAMEWORK 289 4 293 265
PL 550 3 553 480
WEBSITE 562 1 563 228
Total 1,612 9 1,621 1,166

Table 4.4: Statistics about the Wojood-NED software-specific linked
entities

Count
Count of all entity mentions 1,166
Count of unique entity mentions (aliases) 281
Count of unique node IDs (for entity mentions) 152

550 entities. In general, the number of nested entities is small (9) compared to the flat

ones (1,612). Moreover, Table 4.4 illustrates that from 1,361 linked named entity, there

are 276 unique links (in terms of Wikidata Q-identifier), and 598 unique named entity

label.

68 Chapter 4. Research Methodology

Figure 4.3: Examples of flat entity of mentions of different types.

4.3.2 Linking Wojood-NED to Wikidata

Given the Wojood-NED corpus (described in the previous sub-section), our goal in this

section is to link each annotated entity with its corresponding Wikidata node, if exists.

That is, given the named entities in the corpus, including the six software-specific

classes, we aim to link each named entity with the Wikidata knowledge graph.

There are 10 classes of entities that we did not link with Wikidata because they are

irrelevant for our research purposes, which are: EVENT, DATE, TIME, CARDINAL,

ORDINAL, PERCENT, QUANTITY, UNIT, MONEY, and CURR. As a result, the

classes of entities we linked in the corpus are: ORG, OCC, PLATFORM, FRAME-

WORK, WEBSITE, NORP, PERS, PL, APPLICATION, SD, LANGUAGE, GPE,

PP, and LOC. Besides, named entities that do not have a corresponding matching

node on Wikidata are not linked. For example, the frameworks ”Mongo express” and

”MERN”3 are not found on Wikidata. Person names for non-popular people usually

do not have Wikidata nodes and Websites such as بلوهوست مدونة /Bluehost blog does

not have corresponding nodes. In this thesis, although Wojood-NED is annotated

with 21 entity classes. Only software-specific named entities will be considered in the

evaluation of the NED model. Because we are focusing on linking named entities in

software-related texts.

This linking process was performed manually. For each named entity in the corpus, we

query the Wikidata knowledge graph using our lookup module, then the corresponding

node is selected. Figure 4.3 shows how named entities have been linked to Wikidata
3https://www.mongodb.com/mern-stack

4.4. WikiGlossContext Pairs Corpus 69

using the Wikidata Q-identifier number. The entity جافا Java/لغة is linked to its corre-

sponding node in Wikidata (Q251). The named entity ستديو Android/أندرويد Studio is

also linked to the Wikidata node (Q13233410).

4.4 WikiGlossContext Pairs Corpus

As discussed earlier, our methodology to disambiguate and link entities automatically

follow the same methodology used for word-sense disambiguation described in (Al-Hajj

& Jarrar, 2021). The idea is to fine-tune a BERT model on the so-called context-

gloss pair binary classification task (Kannan Ravi et al., 2021). In other words, given

a gloss (i.e., meaning definition) for a target word, and given a context (i.e., a sen-

tence in which the target word appears), BERT is trained to judge whether it is True

(or False) that the given gloss represents the meaning of of the target word in the

given context. The dataset used to train BERT for this task consists of about 167K

context-gloss pairs (Al-Hajj & Jarrar, 2021). Each pair was labeled with True or False

To extend the ArabGlossBERT dataset with more labeled context-gloss pairs (for the

purpose of linking entities with Wikidata), this section describes the process of building

and labeling a corpus of sentence pairs (which we call WikiGlossContext). The sentence

pairs corpus was extracted from Wikidata and Wikipedia. The extracted pairs were

labeled with True, while the False pairs were generated based on these True pairs.

4.4.1 Gloss-Context Pairs Extraction

The following steps, illustrated in Figure 4.4, are performed for gloss-context pairs ex-

traction:

First - Extract raw gloss-context pairs: The first step in building the corpus was

to download the latest version of the Wikidata dump4, then the needed fields were
4 Wikidata dump (16-Dec-2021 01:03) https://dumps.wikimedia.org/wikidatawiki/entities/

https://www.wikidata.org/wiki/Q251
https://www.wikidata.org/wiki/Q13233410
https://dumps.wikimedia.org/wikidatawiki/entities/

70 Chapter 4. Research Methodology

extracted (see fields 1-13 in Table 4.7) and saved in CSV files5. Our goal is to extract

a gloss and a context for each node in Wikidata. For each node in the Wikidata graph,

we extracted the gloss (from the description field in Wikidata) and a context (the first

sentence from the node’s Wikipedia page). In other words, the Wikidata Arabic de-

scription field is considered a gloss, and the Wikipedia’s summary (the first sentence

in a Wikipedia article) is considered a context. To get a context from Wikipedia for a

Wikidata node, we used the Wikipedia site-link that is found in the item information

on the Wikidata node6.

Wikidata nodes that do not have Arabic desecration were excluded. We also excluded

the nodes that do not have a corresponding site-link to Wikipedia. As a result, nodes

with Wikidata descriptions and Wikipedia descriptions are considered a gloss-context

pair and given True label (see fields 14-15 in Table 4.7). Figure 4.5 shows the distribu-

tion of words frequencies for the extracted Wikidata glosses and Wikipedia contexts.

Figure 4.4: NED corpus building and annotating steps
59,532 file, each file contains 10,000 item, number of items 95,318,999
6The Wikipedia Python package is used to retrieve one sentence length summary for the article. To

ensure that the correct match of the label is returned, the summary method parameter auto_suggest

is set to False, and the exact Wikipedia label of the named entity which is extracted from Wikipedia

sit-link is passed to the summary method

https://pypi.org/project/wikipedia/

4.4. WikiGlossContext Pairs Corpus 71

(a) Wikidata Description Length in Words (b) Wikipedia Context Length in Words

Figure 4.5: Glosses and contexts length in words

Second - Clean and normalize nodes’ labels: Given that Wikidata nodes have

Arabic aliases (i.e., alternative labels) in addition to the default label filed, these aliases

are stored in a comma-separated string format in the ”also known as” filed in Wikidata

(see Figure 4.6 and Figure 2.3). In order to treat such aliases as synonyms of node labels,

some pre-processing and normalization are required. For example the item كائنية) برمجة
Object-oriented/التوجه programming) that has the Wikidata Q-identifier (Q79872) has

thirteen aliases (see Figure 4.6), these aliases are normalized and considered synonyms,

i.e., we assign them the same context-gloss pairs as shown in Figure 4.7.

Figure 4.6: Aliases as found in Wikidata for the item Q79872

1. Normalization of node labels: Some Arabic node labels and their aliases are

the same. For example, the node label Ahmad/احمد has aliases such as Ahmad/أحمد

with hamza. The normalization step (for smart matching of Arabic words, See

(Jarrar et al., 2018)) is necessary to unify these cases. The Arabic label of each

node needs to be normalized in order to enhance their consistency and to be used

by the lookup model. The following normalization steps are performed:

https://www.wikidata.org/wiki/Q79872

72 Chapter 4. Research Methodology

Figure 4.7: Item Q79872 aliases expansion

• Removing sub-strings inside parentheses. Such sub-strings in Wikidata are

typically used for disambiguation, not part of the Arabic label, for example,

the item (’Q99840504’) has the label (الأحساء)ء ءالبصيرة /Baseera (Al-Ahsa).

This becomes البصيرة /Baseera. 818,261 node labels were affected by this

normalization step.

• The following special characters were removed from node labels: .[%$#@!�?]

• All Arabic diacritics including Shaddah, as well as small Quranic annotation

signs and tatwelah were removed.

• Underscores were replaced with white space.

• All extra spaces were removed.

• All forms of alif أ،إ) (آ، are unified into .(ا)
2. Data Elimination: The data elimination process is needed to remove irrele-

vant, poor, or duplicate node labels. For example, after normalizing the node

label Ahmad/أحمد to Ahmad/احمد without hamza, two node labels with the same

surface form are found, one of them should be deleted. In addition, given that

some Wikidata nodes are irrelevant, especially those that are not named entities

(listed in Table 4.5) should be excluded. The following data elimination steps are

performed semi-automatically (using scripts):

• Short Wikidata and Wikipedia descriptions (i.e. less than four words long)

were excluded as they do not contribute usefully to the BERT fine-tuning

4.4. WikiGlossContext Pairs Corpus 73

process. The length was learned while auditing and reviewing the corpus

manually, as sentences less than four words usually do not have meaningful

descriptions, and in most cases are the same as the node label.

• Labels written in languages other than Arabic (e.g., English and Chinese)

are excluded.

• Labels that are a symbol or a single character in any language are excluded.

• Incomplete descriptions are excluded. Indeed, some of the descriptions were

not complete. This is due to a limitation of the Python package used to

retrieve a one-sentence length description from Wikipedia based on period.

Some abbreviations that contain a period (.Dr/د.) came in the sentence and

are thus considered the end of the sentence.

• Duplicate labels (as a result of the previous normalization phase) were re-

moved.

• Any node that is an instance-of one of the nodes listed in Table 4.5 is

considered irrelevant and thus excluded. This resulted in excluding 249,425

nodes, which are either not named entities or irrelevant for the purposes of

this research.

Third - Enrich glosses: This step aims to enrich Wikidata description in order

to be used as glosses. Some Wikidata descriptions are short and do not contain

the node label(s). Such poor descriptions may affect the fine-tuning performance

of BERT. To overcome this issue, we follow the same methodology in (Al-Hajj and

Jarrar, 2021), which suggested adding the lemma into the gloss; such that, the

gloss becomes a concatenation of the node label, node type(s), and the description

fields. As such, the gloss is generated accordingly to the following pattern: let the

Wikidata Arabic node label (label), the Wikidata types (type1,type2,...., typen),

and the Wikidata description is denoted by description), then the gloss will be

in the following format: label : type1,type2,...., typen , description. For exam-

ple, the node (Facebook/فيسبوك) has the following Arabic description تواصل) خدمة

74 Chapter 4. Research Methodology

Table 4.5: List of excluded Wikidata types from the WikiGlossContext

Wikidata Type Description
Q577 Year
Q4167836 Wikimedia category
Q11266439 Wikimedia template
Q244751 583 BC
Q3186692 calendar year
Q235680 common year starting and ending on Friday
Q36330215 Wikimedia location map template
Q15647814 Wikimedia administration category
Q4167410 Wikimedia disambiguation page
Q235680 common year starting and ending on Friday
Q36330215 Wikimedia location map template
Q15647814 Wikimedia administration category
Q19828 leap year.
Q14204246 Wikimedia project page.
Q42032 country code top-level domain.
Q41713761 Arabic letter
Q3863 asteroid
Q645924 classical Kuiper belt object
Q13406463 Wikimedia list article
Q21199 natural number
Q13366129 odd number
Q49008 prime number

social/اجتماعي networking service), and has two types:(ويب موقع .(منظمة، Hence, its

gloss becomes اجتماعي) تواصل خدمة ويب، ،موقع منظمة :Facebook/فيسبوك: an organiza-

tion, a website, a social networking service). This enrichment makes glosses more

meaningful and thus helps BERT to form clearer embeddings between related

words.

Fourth - Generate False context-gloss pairs: In the previous steps, we

extracted 730K context-gloss pairs for Wikidata nodes. That is, given a node, we

were able to extract a gloss (from Wikidata) and a context (from Wikipedia). All

extracted pairs in this way are considered True. In this step, we aim to generate

False pairs, based on the True pairs. Both True and False pairs will be used for

fine-tuning BERT models. Recall that a False context-gloss pair means that this

https://www.wikidata.org/wiki/Q577
https://www.wikidata.org/wiki/Q4167836
https://www.wikidata.org/wiki/Q11266439
https://www.wikidata.org/wiki/Q244751
https://www.wikidata.org/wiki/Q3186692
https://www.wikidata.org/wiki/Q235680
https://www.wikidata.org/wiki/Q36330215
https://www.wikidata.org/wiki/Q15647814
https://www.wikidata.org/wiki/Q4167410
https://www.wikidata.org/wiki/Q235680
https://www.wikidata.org/wiki/Q36330215
https://www.wikidata.org/wiki/Q15647814
https://www.wikidata.org/wiki/Q19828
https://www.wikidata.org/wiki/Q14204246
https://www.wikidata.org/wiki/Q42032
https://www.wikidata.org/wiki/Q41713761
https://www.wikidata.org/wiki/Q3863
https://www.wikidata.org/wiki/Q645924
https://www.wikidata.org/wiki/Q13406463
https://www.wikidata.org/wiki/Q21199
https://www.wikidata.org/wiki/Q13366129
https://www.wikidata.org/wiki/Q49008

4.4. WikiGlossContext Pairs Corpus 75

Table 4.6: Statistics about the WikiGlossContext corpus

Count
True pairs (extracted) 731,509
False pairs (generated) 374,899
Total 1,106,408

gloss does not represent the meaning of the node mentioned in this context. To

generate False pairs automatically, we used two alternative methods:

(a) Cross-Relating: Based on the 730K True pairs extracted in the previous

step, the False pairs were then generated. This is done as follows: True

gloss-context pairs for a given node label are cross-related. For example, let

(context1-gloss1) and (context2-gloss2) be the two True pairs of the same

node label, then (context2 - gloss1) and (context1 - gloss2) are generated

and labeled with False. This done only node labels that belong to different

nodes. For example, as shown in Figure 4.8, Python/بايثون appears with in

two True context-gloss pairs (i.e., for two different Wikidata nodes), these

we cross-related the context and glosses to generate False pairs. As a result

of that, about 374,899 False pairs were generated. Table 4.6 provides some

statistics about the corpus.

Figure 4.8: Example of False pairs generated using cross-relating.

(b) False Local: Another approach for generating false pairs is to choose the

false gloss that is closest to the true one for the named entity. In this

method, the closest gloss is determined by measuring the cosie-similarity of

the BERT representations of the glosses. Then the gloss with the highest

similarity is determined as the false pair. This method aims to generate

76 Chapter 4. Research Methodology

a robust model by fine-tuning it using difficult samples (i.e. the true and

the false glosses for the named entity are close to each other as they have

the highest similarity) and hence the model is trained to distinguish true

pairs from false pairs to a given named entity which are similar or with

subtle changes. For example, Figure 4.9 shows examples of false pairs

generated based on the False-local method. For example, the false gloss of

the named entity (٦٣٠ لوميا Nokia/نوكيا Lumia 630) is selected based on the

cosine similarity of the BERT embedding of the true gloss هاتف) :٦٣٠ لوميا نوكيا
فون ويندوز بنظام يعمل نوكيا من Nokia/ذكي Lumia 630: A Nokia Smartphone With

Windows Phone) with other glosses. Therefore, (٧٢٠ لوميا Nokia/نوكيا Lumia

720) is selected as a negative gloss. Note that the gloss in this case is similar

to the true one (they have the same definition with only different version

numbers). In this approach, the ratio values were used (1:1). That is, for

each True context-gloss pair, only one False pair was generated.

Figure 4.9: Example of a negative pairs generation based on the false-
local method.

4.5 Splitting into Training, Validation and Test Datasets

This section describes how we divided our corpus into training, validation, and testing

sets and the criteria used to avoid information leak between the mentioned sets. Recall

that the False pairs in the WikiGlossContext were generated using two methods (cross-

relating and false-local). In the following subsections, we present the data splitting

produced for each of the methods.

4.5. Splitting into Training, Validation and Test Datasets 77

Table 4.7: The Wikidata extracted fields’ description

Filed Description
1 id The Wikidata Unique identifier. (e.g. Q28865)
2 type The Wikidata instance of property (P31). Stored in a comma-

separated value (e.g. Q899523, Q1268980,...,Q3839507)
3 arlabel The Arabic label for the entity (e.g. (Python/بايثون
4 enlabel The English label for the entity (e.g. python)
5 araliases The also-known as Arabic labels for the entity. Stored in a comma-

separated value (e.g. ،بايتون بيثون ألبيثون، (Python/البايثون،
6 enaliases The also-known as English labels for the entity. Stored in a

comma-separated value (e.g. py, python 2, python 3)
7 ardescription The Arabic description filed for the entity (e.g. المستوى عالية برمجة، لغة

للتوسيع. قابلة المصدر general-purpose/مفتوحة programming language)
8 endescription The English description filed for the entity (e.g. general-purpose

programming language)
9 maincategory The topic’s main category property (P910). Stored as comma-

separated value (e.g. Q7136128)
10 arwiki The Arabic Wikipedia label for the entity (e.g. (لغة بايثون

Python(Programming/برمجة) Language))
11 enwiki The English Wikipedia label for the entity (e.g. Python)
12 arwikiquote The Arabic entity label for the entity on Arabic Wikiqoute
13 enwikiqoute The English Wikiqoute label for the entity (e.g. Python)
14 wikiDescrption The Wikipedia Description for the entity in the Arabic Language

(e.g. تعتمد للتوسيع، قابلة امصدر مفتوحة التعلم سهلة المستوى عالية برمجة، لغة هي بايثون
. الكائنية البرمجة Python/(أسلوب is a high-level, interpreted, general-
purpose programming language.

15 Label True if the Wikidata Arabic description and the Wikipedia Ara-
bic description is for the same entity, otherwise False

4.5.1 Splitting WikiGlossContext Induced by The Cross-related Method

The dataset should be split (into train, validation and test sets) carefully to prevent

information leaks. The dataset contains one or more contexts for each Arabic label,

thus it cannot be split arbitrarily. Contexts used in the training should not be used in

the test dataset. Thus, the test dataset was selected taking into account the following

criteria: Every context selected in the test set should not be selected in the training

set for the same Arabic label. This is done by firstly, splitting the labels using stratify

option into the train, and testing to maintain the same proportions of samples in each

of the True and False classes. Besides, to ensure that pairs that belongs to one label

only belongs to one of the datasets (e.g. all pairs for the جافا) /Java) label are found in

train or test datasets, but not both). Then, the training dataset is split into train and

78 Chapter 4. Research Methodology

validate sets with a percentage (90:10), so the whole dataset is split into 80% train,

10% validation, and 10% test. Table 4.8 provides statistics about these sets.

Table 4.8: Splitting WikiGlossContext induced by the cross-related
method

Dataset Pairs Count Total

Training True 592904 899,705
False 306,801

Validation True 65,879 99,968
False 34,089

Test True 72,726 106,735
False 34,009

Total 1,106,408

4.5.2 Splitting WikiGlossContext Induced by The False-Local Method

In this method, we split the WikiGlossContext pairs into three balanced sets (train,

validate, and test). To avoid information leaks between pairs in the three sets, the True

pairs were, first, split into train, validation, and test sets with a ratio (70%, 10%, 20%),

respectively. Then, for each set, False pairs were generated separately by selecting a

False pair with the highest similarity to the True one using the method illustrated in

section 4.4.1. Table 4.9 provides statistics about these sets.

Table 4.9: Splitting WikiGlossContext induced by the False-Local
method

Dataset Pairs Count Total

Training True 399,797 799,594
False 399,797

Validation True 56,544 113,088
False 56,544

Test True 114,799 229,598
False 114,799

Total 1,142,280

4.5. Splitting into Training, Validation and Test Datasets 79

4.5.3 Combined Datasets

In this section, we extend the ArabGlossBERT (Al-Hajj & Jarrar, 2021) dataset with

additional context-gloss pairs from our WikiGlossContext dataset. More specifically,

we propose different dataset combinations (as shown in Table 4.10). The (D0) dataset

is the original ArabGlossBERT dataset. In D1, D2, D3 and D4, we added a fixed

number of True pairs (23k, 40k, 200k, and 400k) to the ArabGlossBERT training set,

respectively. We did not add the False pairs into these because the original Arab-

GlossBERT already has a lrage number of False pairs. The test dataset is kept the

same ArabGlossBERT test. Keeping the same testing dataset is important to com-

pare whether our enrichment to the original dataset improves the performance. In

D5 (ArabGlossBERT+WikiGlossContextcross-related), we added all the context-gloss

pairs form WikiGlossContextcross-related into ArabGlossBERT training set, and then the

dataset is divided into three sets (training, validation and testing) with ratio (80%, 10%,

and 10%) respectively. However, in D6 (ArabGlossBERT+WikiGlossContextfalse-local),

we added all the context-gloss pairs form WikiGlossContextfalse-local into ArabGloss-

BERT training set, and then the dataset is divided into three sets (training, val-

idation and testing) with ratio (80%, 10%, and 10%) respectively. Although, in

this combination we produced different test dataset. Finally, D7 and D8 are the

WikiGlossContextcross-related and WikiGlossContextfalse-local datasets that were described

in the tables (4.8, and 4.9) respectively.

80 Chapter 4. Research Methodology

Table 4.10: Combined datasets’ description

Dataset Pairs Count Total

(D0).
ArabGlossBERT

(Al-Hajj & Jarrar, 2021)

Training
True 55,373

151,893
False 96,520

Testing
True 4,842

15,206
False 10,364

Total 167,099

(D1). ArabGloss+Wiki23KTrue

Training
True 70,923

157,791
False 86,868

Validation
True 7,881

17,533
False 9,652

Testing
True 4,842

15,206
False 10,364

Total 190,530

(D2). ArabGloss+Wiki40KTrue

Training
True 85,835

172,703
False 86,868

Validation
True 9,538

19,190
False 9,652

Testing
True 4,842

15,206
False 10,364

Total 207,099

(D3). ArabGloss+Wiki200KTrue

Training
True 229,835

316,703
False 86,868

Validation
True 25,538

35,190
False 9,652

Testing
True 4,842

15,206
False 10,364

Total 367,099

(D4). ArabGloss+Wiki400KTrue

Training
True 499,629

676,456
False 176,827

Validation
True 55,515

75,162
False 19,647

Testing
True 4,842

15,206
False 10,364

4.5. Splitting into Training, Validation and Test Datasets 81

Table 4.10 – continued from previous page

Dataset Pairs Count Total

Total 766,824

(D5). ArabGloss+WikiGlossContextcross-related

Training
True 642,740

1,036,409
False 393,669

Validation
True 71,416

115,157
False 43,741

Testing
True 72,726

106,735
False 34,009

Total 1,258,301

(D6). ArabGloss+WikiGlossContextfalse-local

Training
True 460,542

958,117
False 497,575

Validation
True 51,172

106,458
False 55,286

Testing
True 114,799

229,598
False 114,799

Total 1,294,173

(D7). WikiGlossContextcross-related

Training
True 592904

899,705
False 306,801

Validation
True 65,879

99,968
False 34,089

Test
True 72,726

106,735
False 144,535

Total 1,106,408

(D8). WikiGlossContextfalse-local

Training
True 399,797

799,594
False 399,797

Validation
True 56,544

113,088
False 56,544

Test
True 114,799

229,598
False 114,799

Total 1,142,280

82 Chapter 4. Research Methodology

4.6 Summary

In this chapter, we explained the entity disambiguation and linking process. The main

components were presented in section 4.1. In this chapter, we justify the need for anno-

tated corpora in section 4.2. Then, the process of annotating and linking Wojood-NED

is illustrated in the section 4.3.1. The WikiGlossContext corpus building is illustrated

in section 4.4. Finally, the training, validation, and testing datasets are described in

section 4.5.

83

Chapter 5

Candidate Lookup

5.1 Introduction

In this chapter, the candidate lookup component will be explained. Candidate lookup

is the second component in the entity linking process that is responsible for returning

the candidate nodes (from Wikidata) for a given named entity. In section 5.2, we

present popular methodologies for retrieving candidates from knowledge graphs. In

this research, we extend the approach proposed in (Sakor et al., 2020) by developing a

local data store for the Arabic language and building a search engine on top of it using

the Elasticsearch framework.

5.2 Candidate Lookup Methods

Candidate lookup could be done using many techniques, some of the popular methods,

which we did not use, are:

1. Surface form matching: the list of possible candidates can be generated from

all the possible surface forms of the mentions in a specific text. This is done

using NLP techniques such as Levenshtein distance, n-grams, and normalization

(Zwicklbauer et al., 2016).

84 Chapter 5. Candidate Lookup

2. Aliases expansion: a dictionary of named entity aliases can be constructed from

the named entity ”also named as” field in Wikidata. One competitive advantage of

this method is improving the recall of the candidate lookup generation compared

with sub-strings, which cannot catch similar cases (Alam et al., 2022).

3. Prior probability computation: generate the candidate list based on em-

pirical probability. This is the pre-computed probability of correspondence be-

tween certain mentions and entities p(e|m). An entity map can be generated

from Wikipedia hyperlinks (Ganea & Hofmann, 2017), cross wikis (Spitkovsky &

Chang, 2012) and YAGO (Hoffart et al., 2011).

4. SPARQL query: the named entity can be passed to a SPARQL endpoint that

matches it with the Label filed in Wikidata. This method is used by many research

that targeted Arabic language (Al-Smadi et al., 2015). One major limitation of

this method is that the entities can be refereed to by its aliases rather than its

label. Moreover, if the named entity is not perfectly match the label then the

result query will miss the named entity. Besides, many heuristics have to be

included in order to overcome the mentioned limitations.

In the candidate lookup component, we have implemented a method other than the

above-listed methods. We built a local store, extracted from Wikidata nodes, similar

to the methodology followed by (Sakor et al., 2020). But instead of including only

labels and aliases of the nodes, the local store includes the following fields: (1) the

Wikidata Arabic labels, (2) their aliases, (3) the corresponding Wikidata English la-

bels, (4) the Wikipedia site-links, (5) the Wikidata and Wikipedia descriptions for each

node, and (6) the Wikidata Q-identifier. These fields will be indexed using the Elas-

ticsearch framework 1 which uses the BM25 algorithm for ranking (Logeswaran et al.,

2019). The Elasticsearch was then customized to best find the possible candidates for

each named entity. The Elasticsearch supports the lookup of both Arabic and English

search queries, though the retrieved results are only in Arabic. This means that if a
1https://www.elastic.co/

https://www.elastic.co/

5.3. Index and Analyzer 85

named entity mentioned is in English inside and Arabic sentence, our entity linking

components can look up and disambiguate this entity.

5.3 Index and Analyzer

The analyzer role is to inform Elasticsearch on how to index and search text. Elas-

ticsearch comes with a wide range of built-in analyzers, which can be applied on any

index without extra configuration 2. In our case, a custom analyzer was built to support

multilingual term search3. The analyzers’ types were combined in a custom analyzer

for Arabic and English.

1 PUT /Arabic_Analyzer
2 {
3 "settings": {
4 "analysis": {
5 "filter": {
6 "arabic_stop": {
7 "type": "stop",
8 "stopwords": "_arabic_"
9 },

10 "arabic_stemmer": {
11 "type": "stemmer",
12 "language": "arabic"
13 }
14 },
15 "analyzer": {
16 "rebuilt_arabic": {
17 "tokenizer": "standard",
18 "filter": [
19 "lowercase",
20 "decimal_digit",
21 "arabic_stop",
22 "arabic_normalization",
23 "arabic_keywords",
24 "arabic_stemmer"
25]
26 }}}}}

Figure 5.1: The Arabic analyzer configuration

2https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
3The full implementation of the Analyzer can be found in the GitHub repository https://github.

com/eng-aomar/Thesis/blob/main/notebooks/wikidata_indexing.ipynb

https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-analyzers.html
https://github.com/eng-aomar/Thesis/blob/main/notebooks/wikidata_indexing.ipynb
https://github.com/eng-aomar/Thesis/blob/main/notebooks/wikidata_indexing.ipynb

86 Chapter 5. Candidate Lookup

1 PUT /English_Analyzer
2 {
3 "settings": {
4 "analysis": {
5 "filter": {
6 "english_stop": {
7 "type": "stop",
8 "stopwords": "_english_"
9 },

10 "english_stemmer": {
11 "type": "stemmer",
12 "language": "english"
13 },
14 "english_possessive_stemmer": {
15 "type": "stemmer",
16 "language": "possessive_english"
17 }
18 },
19 "analyzer": {
20 "rebuilt_english": {
21 "tokenizer": "standard",
22 "filter": [
23 "english_possessive_stemmer",
24 "lowercase",
25 "english_stop",
26 "english_keywords",
27 "english_stemmer"
28]
29 }}}}}

Figure 5.2: The English analyzer configuration

The code listed in the Figures (5.1, 5.2) show the configuration of the custom analyzer.

Below is the description of how they analyze input queries:

• The standard analyzer is used to split the text into word boundaries. For example,

(The Java language) is split into [The, Java, Language], and جافا) The/لغة Java

language) is split into .[language/لغة,Java/جافا]

• The stop-word filter removes stop words. For example, in the English analyzer,

(the Java) becomes [Java] by removing (the). The same as in the Arabic an-

alyzer, the stop-word (using/بـ) in the named entity(using/بجافا Java) becomes

.([Java/جافا])

• The Arabic stemmer (a built-in stemmer from the Elasticsearch) is applied to the

tokenized words in the Arabic language. The same idea is applied to the tokens

5.4. Query Configurations 87

emitted from the English tokenizer. For example the token [Foxes] is stemmed

into [Fox], and the [Engineers/مهندسون] is stemmed into .[Engineer/مهندس]

The filter in our configurations (line 18 and 22) is applied to the tokens emitted from

the tokenizer to tidy up the tokens. In line 6, the filter removes the stop-words4 from

the Arabic language, while in line 10, the Arabic stemmer is applied to the tokenized

words in the Arabic language. The same idea is applied to the tokens emitted from the

English tokenizer, Figure 5.2, lines six and ten, while the possessive steamer (line 14)

removes the trailing possessive ’s, (e.g., Harvard’s becomes [Harvard]).

These steps are important in the search process, as for example, named entities that

belong to the NORP class are plural such as أطباء) مبرمجون، ,Engineers/مهندسون، program-

mers, doctors), and thus cannot be found in Wikidata if exact matched. Hence, they

have to be stemmed first into (طبيب مبرمج، ,Engineer/مهندس، Programmer, Doctor), then

passed as a query. The same applies to stop-words, as named entities that contain

stop-words such as As/كأسمبلي) Assembly) is hard to find in Wikidata if the stop-word

(As/كـ) is not removed. Elasticsearch framework provides these mechanisms without

the need to use heuristics to handle such cases.

5.4 Query Configurations

Elasticsearch queries’ results are ordered according to relevancy so that records that

are more relevant to the search query are given higher ranks and hence appeared on

top. However, the relevancy depends more on the use case, and therefore, relevancy

may depend on the application domain and needs to be tweaked to work as intended.

Elasticsearch at first minimizes the number candidate results before scoring the records,

this is done by enforcing a Boolean test that contains only matched records to the search

query. Elasticsearch uses BM25 as a default scoring algorithm, so the score is calculated

for each record and then ordered based on the rank value. In general, there are three

main principles that play a role in record scoring:
4The Arabic stop-words are built-in in the Elasticsearch, but a custom stop-words could be used

88 Chapter 5. Candidate Lookup

1. Term frequency (TF): Search term appears in the field we are looking at.

2. Inverse document frequency (IDF): The more records that include a search

term in the field we are looking for, the less significant that term will be.

3. Field length: records with short search term filed are more relevant than long

fields (i.e. has many words).

1 body = {
2 "query": {
3 "bool": {
4 "should": [
5 {
6 "multi_match": {
7 "query": query ,
8 "fields": fields ,
9 "fuzziness": 1

10

11 }
12 },
13 {
14 "multi_match": {
15 "query": query ,
16 "fields": fields ,
17 "operator": "and",
18 "fuzziness":1
19

20 }
21 },
22 {
23 "match_phrase": {
24 "arlabel": {
25 "query":query ,
26 "boost": 5
27 }
28 }
29 },
30 {
31 "match_phrase": {
32 "enwiki": {
33 "query":query ,
34 "boost": 1
35 }}}]}}}

Figure 5.3: Query body configuration

Sakor et al., 2020 have used a simple match query to search Wikidata labels, after

extending their local store with label aliases. However, a multi-term matching query

(i.e. a query that contains multiple words) will use the OR operator by default which

5.4. Query Configurations 89

will return records containing any of the terms in the query, as the OR operator does

not take into account the position of the words. For example, the query contained

the named entity جافا) لغة /Java language) may match many records that contain the

word Language/لغة) or ,(Java/جافا although some of the matched records that contain

(Language/لغة) alone may be only partially relevant. In addition, the totally matched

records to the search query may give a score less than records that contain the search

query as a sub-string. Elasticsearch is flexible when it comes to query building. It can

offer an exact match of the search term using AND operator instead of the default

(OR), but using AND operator will limit the search space to only results that match

exactly the search term. For example if the term is جافاسكريبت) JavaScript/لغة language),

searching Wikidata using the exact term will give no results since there is no match with

the exact label or its aliases in Wikidata. To overcome this limitation, we build a query

that favors exact matches if exists and ranked it higher, but also returns other relevant

candidates. This is achieved by using ”Boolean query” to combine OR and AND oper-

ators, and multi-match query to search within multiple fields. That is, fields including

Wikidata aliases and Site-link labels in Arabic and English, without the need to search

in each field separately. The more-matches-is-better approach is followed when using

the ”Should” clause in the Boolean query so that each clause’s score will contribute to

the final score of each returned result. To favour clauses in the query, we boosted (i.e.,

a number is given to favour the clause, the higher is the more favoured, line 26, and

34) individual clauses regrading the clause we want to be ranked higher. For example,

match with AND operators is given a higher boost value, so it appears first in the re-

sults. Moreover, the fuzziness parameter in the query configuration 5.3 is used to handle

typos which are common in websites’ discussions such as Quora, Stack-overflow, etc.

For example, the word (Python/بايثون) can be misspelled with ,(Python/بيثون) and the

word(asp.net) with(asb.net). Using the fuzziness attribute, Elasticsearch can handle

such cases by taking into account the possibility of characters missing or appeared in

the wrong order (e.g., Translated/مترجم is misspelled with .(Translated/مترمج The value

is determined when building the query. In our case, one character only is considered

90 Chapter 5. Candidate Lookup

to be reordered. This value is chosen to limit the number of records returned, and at

the same time handle common typos which are popular.

5.5 Candidate Lookup Query Evaluation

In this section, we provide an evaluation of the Candidate lookup component based

on the query configuration described in section 5.4. This evaluation is done using

598 unique named entities (unique surface forms) from the Wojood-NED corpus (e.g.

,python/بايثون and python/بيثون are two unique surface forms for the same named entity

”python”). This was done by passing the named entities to the query and limiting the

query size to the top seven results. Then, glosses retrieved from Wikidata were labeled

to True if the retrieved Wikidata IQ-identifier for the named entity matched the Wiki-

data IQ-identifier found in Wojood-NED for that named entity, otherwise, glosses were

labeled with False.

The bar charts in Figure 5.4 depict the results of the query evaluation that was per-

formed using 598 unique named entities. The first chart 5.4a shows the percentage of

the correct match (i.e. the True candidates) per order in the candidate list returned

by the query. Overall, the majority of correct matches (68%) came in the first order in

the candidate list. Followed by (16%) of the correct matches which came in the second

order. While only (15%) of the correct matches occupied the bottom five positions

(i.e third, fourth, fifth, sixth, and seventh). In general, the size of the candidate list

returned by the query varied between at most four candidates and at least one unique

candidate. However, the correct match came in advanced orders, most notably first in

the list of candidates with a high percentage.

In terms of query size, the second chart 5.4b shows the percentage of candidate lists’

size returned by the query. The majority (28%, and 24%) of the named entities passed

to the query have four and five candidates respectively. Moreover, (14%) of the named

5.5. Candidate Lookup Query Evaluation 91

(a) The order of the true result returned by
the query (b) Query results’ percent per size

Figure 5.4: Achieved results of applying search using the fine-tuned
query

entities have three candidates. While (11%) of the named entities have unique can-

didates returned by the query. Only (9%) of the named entities have seven or two

candidates returned by the query. While only 4% of the named entities returned six

candidates.

Table 5.1 shows statistics about the results of querying 598 unique named entities using

the query configuration presented in Figure 5.3. The query configuration returned the

correct match with an accuracy of 419 (70%). While the rest 117 (30%) of the named

entities do not have a correct match within the list of candidates.

To understand the reasons behind this percentage (i.e. 30% of the queries do not

have correct match within the candidate list), we further analyzed the results and we

found that the majority 114 (80%) of the named entities in this category do not have

a matching node on Wikidata. While 27 (15%) of the results contains typos that mis-

led the search component, for example, the word Google was written as .Google/كوكل

92 Chapter 5. Candidate Lookup

Table 5.1: Query configuration statistics

Category Count
Has correct match 419 (70%)

Does not have
correct match

Typos 27 (15%)
Does not have Wikidata node 144 (80 %)
Have Wikidata node 8 (5%)
Total of no match 179 (30%)
Count of unique named entities 598

However,كوكل/Google is not one of the aliases for the named entity .Google/جوجل Fi-

nally, the minority 8 (5%) of the node have Wikidata nodes but the query could not

return the correct (i.e. the named entity gloss) match within the query result. In our

Query configuration, we handled typos by using the fuzziness attribute (refer to section

5.4). However, this attribute can not handle all types of user typos. Besides, increasing

the number associated with this attribute can increase the irrelevant results, and cause

error propagation to the next component (NED).

Outlook: The overall accuracy can be enhanced by supporting the Arabic content on

Wikidata and using auto-correction tools to handle typos of the end users which is a

common problem in the QA websites.

5.6 Summary

In this chapter, the candidate lookup module was explained. The sections (5.3, 5.4)

respectively explain the configuration process of the Elasticsearch framework. Finally,

section 5.5 shows that the configuration is efficient for the quires. In the next chapter,

the process of fine-tuning and evaluating BERT models to select the best-performing

model for the NED component will be illustrated.

93

Chapter 6

Entity Linking

6.1 Introduction

Entity linking (EL) is the process of deciding which node in a knowledge graph (e.g.

Wikidata) corresponds to a given named entity in the sentence. For a recognized named

entity in the text, possible candidate nodes are looked up from the kG (Wikidata in our

case). These nodes are then fed to the NED component to determine the correct node.

The problem of NED is treated in this thesis as WSD problem. In this chapter, the NED

problem is described in section 6.2, and the environmental setup needed to conduct

our experimentation using BERT is explained in section 6.3. After all, the results of

experiments are reported and discussed in section 6.4. To select the best performing

model from all the fine-tuned models, we did a disambiguation evaluation for entity

linking, which is explained in subsection 6.4.3. After that, the best-performing model

was deployed as a linguistic API and used in the implementation of the two components,

and a demo was presented for the linking process in section 6.5. Finally, in section 6.6,

a couple of scenarios were presented to demonstrate how the entity linking components

can be used to disambiguate software-specific named entities based on their contexts.

94 Chapter 6. Entity Linking

6.2 Entity Disambiguation

To solve the NED problem, as said earlier, we intend to use the pre-trained Arabic

BERT models. To use BERT, we treat the NED problem as a sentence-pair (i.e.

context-gloss) binary classification problem. The binary text-classification architecture

in BERT is used to solve this problem. This is similar to the approach followed by

Kannan Ravi et al., 2021. BERT can distinguish two tasks in the text classification.

The first is one sentence classification, such as sentiment analysis, where one sentence

is classified into two or multiple classes. The second is pair-sentence classification, in

which the BERT model is fed with two sentences (sequences), and a special token called

[SEP] is used to separate the two sentences and tell BERT that this is a pair-sentence

classification. Thus the dataset must have three columns, in our case (contexts, glosses,

and label). Another special token [CLS] is added as a first token at the beginning of

the first sequence. This token stands for classification, and represents a sentence-

level classification. The input sequences must be tokenized using the suitable BERT

tokenizer. Tokens are an essential component of the NLP pipeline. They serve one

purpose: to convert the input text into a form that can be processed by the pre-trained

BERT model. Since BERT can only handle numbers, the job of the tokenizer is to

provide the model with the correct input format by translating the text input into

numeric data (Figure 6.1).

Figure 6.1: Tokens to ids representation of the sequence

Transformers library offers tokenizers for all models’ architectures, they come in two

flavors, a full Python implementation, and a fast, Rust-based implementation. The

fast implementation shows particularly significant acceleration when making batched

tokenization. In all experiments, the fast tokenizer is used with dynamic patching, as

6.3. Environmental Setup 95

longer sequences are disproportionately expensive because attention is quadratic to the

sequence length (Devlin et al., 2018). To speed up pre-training in our experiments, the

max-length of the sentences is considered for each batch rather than the whole dataset

by using DataCollatorWithPadding 1 offered by transforms library. For each batch,

the [PAD] token is added to the sentences that are shorter than the longest sentence

in the batch, so if we have a batch with a max-length sentence equal to 120 tokens in

a dataset that has a max-length sentence equals to 512 tokens, then the sentences in

that batch are padded to the max length of 120 rather than 512. This process is done

per batch.

There are several pre-trained Arabic BERT models (explained in section 2.3.2), which

we will use to conduct our experiments in this chapter. That is, we will fine-tune

a set of pre-trained Arabic BERT models using the different dataset variations we

presented in Table 4.10 and produced from the WikiGlossContext corpus and combined

them with ArabGlossBERT (Al-Hajj & Jarrar, 2021). The goal of conducting multiple

experiments is to, first, choose the best pre-trained Arabic BERT model and then adopt

it for the rest of the work. Second, there is a need to experiment with the different

datasets variations in order to select the best-performing variation from the available

sets. As a result, a total of eleven experiments were conducted, and two entity linking

evaluations were performed on the eleven models to select the best performing one.

The following sections provide the needed information about the experimental setup

and the results of the experiments.

6.3 Environmental Setup

The Google Colaboratory aka Google Colab was used to conduct the experiments. This

platform is offered by Google research and is available in three editions. The Colab

free charge for use, Colab Pro, and the Colab Pro++. The three editions offer GPU

and RAM, with some difference, as Colab Pro offers high Ram, while Colab Pro++
1refer to https://huggingface.co/docs/transformers/main_classes/data_collator

https://huggingface.co/docs/transformers/main_classes/data_collator

96 Chapter 6. Entity Linking

offers background execution, high Ram, and faster GPUs. In this research, the Google

Colab Pro++ is used to overcome the time connection limitation in Google Colab by

making use of the background execution feature (Table 6.1). Python programming

language version (3.7.13) was used to implement the experiments because of its pop-

ularity, preference, and the plethora of NLP and ML libraries support compared to

other languages.

Table 6.1: NED task environment setup

Type Specification
GPU Tesla P100-PCIE
RAM 52 GB
CUDA Version 11.2
Disk 166.83 GB
Operation System Ubuntu 18.04 LTS
Programming Language Python 3.7

6.3.1 Experiment Hyperparameters

Table 6.2 presents the hyperparameters used in fine-tuning the BERT models for all

the experiments. These values were selected based on the recommendation by the

original BERT paper, which stated large datasets (larger than 100K) are less sensitive

to hyperparameters change (Devlin et al., 2018). While the rest of the hyperparameters

are kept at their defaults. The base configuration of the three models in the experiments

(Aarabertv02, bert-base-multilingual, UBC-NLP/MARBERTv2) is selected due to the

computational limitations. Besides, large models do not necessarily give better results

(Abdelali et al., 2021; Inoue et al., 2021). The fine-tuning is done using a custom

Trainer class that subclass the compute_loss function as weighted loss to handle the

unbalanced training set 2. The learning rate =2e-5 and batch size=16 were selected

based on a limited grid search, with early stopping if there is no improvement on the

validation loss metric after three epochs. On average, the models converged around

epoch five.
2 refer to https://huggingface.co/docs/transformers/main/en/main_classes/trainer#trainer

https://huggingface.co/aubmindlab/bert-base-arabertv02
https://huggingface.co/bert-base-multilingual-uncased
https://huggingface.co/UBC-NLP/MARBERTv2
https://huggingface.co/docs/transformers/main/en/main_classes/trainer#trainer

6.3. Environmental Setup 97

Table 6.2: Hyperparameters values

Parameter Value
Number of train epochs 10
Evaluation strategy epoch
Evaluation steps 50
Seed 42
Optimizer AdamW
learning rate 2e-5
batch size 16
Early stopping monitor Validation loss
Early stopping patience 3

6.3.2 Experiments’ Tracking

In order to track the model building and experimentation’s results, we used available

MLOps platforms, such as Weights & Biases and Neptune.ai. These platforms offer a

single place to log, store, query, display, organize, and compare all model metadata.

The following artifacts are tracked per experiment:

1. Checkpoint used.

2. Dataset Information, including sets size, classes frequencies, files paths, and hug-

gingface repository..

3. Experiment hyperparameters used in fine-tuning the model.

4. The fine-tuned model Huggingface repository with model card documentation.

5. Train/Validation loss values.

6. Experiment predictions [accuracy, precision, recall, f1 score].

7. Confusion matrices.

The complete experiments’ tracking projects are available on Neptune, and Weights &

Biases

https://wandb.ai/
https://neptune.ai/
https://app.neptune.ai/alaa.omer2009/SW-NED/experiments?split=tbl&dash=images&viewId=standard-view
https://wandb.ai/alaa/SW-NED?workspace=user-alaa
https://wandb.ai/alaa/SW-NED?workspace=user-alaa

98 Chapter 6. Entity Linking

6.4 Experiments’ Results

This section includes all the experiments conducted and their results. In all the exper-

iments presented, the ArabGlossBERT (Al-Hajj & Jarrar, 2021) test set was used to

evaluate all the models. Moreover, The models that were fine-tuned using the datasets

D5, D6, D7, and D8 were evaluated using the WikiContextGloss test described in the

Table 4.10. The accuracy and the macro average of three measures, accuracy, recall,

and f1-score measures of system performance were used. The fine-tuned models from

the experiments were also evaluated against the Wojood-NED corpus to link the named

entities with their nodes on Wikidata, the accuracy metric was used to evaluate the

linkage performance of the fine-tuned models. Table 6.6 shows a summary of informa-

tion about the fine-tuned models, the information includes (model number, the Arabic

BERT model used to fine-tune the model, and the dataset used to fine-tune the model).

The models will be denoted by their model numbers in the rest of this thesis.

6.4.1 Experiments’ Set One: BERT Models

The objective of this experiment is to study the effect of using different Arabic BERT

models on the performance of the fine-tuned models. This experiment is done using the

WikiGlossContextcross-related dataset described in Table 4.8, using the hyperparameters

defined in Table 6.2, and three Arabic BERT models (Arabertv02, bert-multilingual,

MARBERTv2).

Table 6.3 shows relatively close results for the three used pre-trained models when eval-

uated on the WikiContextGloss test set. However, there is a significant difference in the

results when the ArabGlossBERT (Al-Hajj & Jarrar, 2021) was used. The results show

the model that was fin-tuned using Aarabertv02 and denoted by M1 outperforms the

others with (16%, and 11%) increase in the (f1-score and accuracy) respectively when

evaluated using the ArabGlossBERT (Al-Hajj & Jarrar, 2021) test set. But unfortu-

nately, the results on the ArabGlossBERT(Al-Hajj & Jarrar, 2021) were disappointing

https://huggingface.co/aubmindlab/bert-base-arabertv02
https://huggingface.co/bert-base-multilingual-uncased
https://huggingface.co/UBC-NLP/MARBERTv2
https://huggingface.co/aubmindlab/bert-base-arabertv02

6.4. Experiments’ Results 99

Table 6.3: Achieved results (%) after fine-tuning three different Arabic
BERT models on WikiGlossContextcross-related dataset (Table 4.8)

WikiGlossContextcross-related ArabGlossBERT

Model# True False Avg True False Avg

(M1). (D7.)
AraBERTv2

Precision 98 97 97 35 78 57
Recall 99 95 97 83 29 56
F1-score 98 96 97 49 42 46
Accuracy 97 46

(M2). (D7.)
bert-multilingual

Precision 97 95 96 32 71 51
Recall 97 94 96 93 07 50
F1-score 97 94 96 48 13 30
Accuracy 96 35

(M3). (D7.)
MARBERTv2

Precision 97 96 96 32 71 51
Recall 98 93 96 93 07 50
F1-score 98 95 96 48 13 30
Accuracy 97 35

in all the experiments in the first set. The first possible reason for that disappoint-

ing result could be the nature of the data, as the ArabGlossBERT(Al-Hajj & Jarrar,

2021) is a lexicon dataset that was extracted from (150) Arabic lexicons, and contains

concepts rather than named entities. Unlike the model which was fine-tuned on dif-

ferent data types (Wikidata and Wikipedia) descriptions. The second reason could

be the small size of the ArabGlossBERT test (only 15,206 pairs), compared to the

WikiGlossContextcross-related dataset (1,228,215 pairs). Moreover, the classes distribu-

tion for the ArabGlossBERT test which has more (False pairs, 10,364) than the (True

pairs, 4,842). While the WikiGlossContextcross-related dataset as described in Table 4.8,

section 3.4, shows that the True pairs are much more than the False pairs. It is impor-

tant to note that getting a bad performance on ArabGlossBert(Al-Hajj & Jarrar, 2021)

test set does not mean the model is bad in linking. But, it means the model can not

do well in classifying concepts not named entities. Hence, the models real performance

will be judged in the linking (disambiguation) evaluation in section 6.4.3. The results

of the experiments contributes to the research question RQ2 part which asks about

the best performing Arabic pre-trained model. Based on the results the Aarabertv02

model will be used in fine-tuning all models in the upcoming experiments.

https://huggingface.co/aomar85/fine-tuned-arabert-ned-latest
https://huggingface.co/aomar85/fine-tuned-bert-base-multilingual-uncased-NED_latest
https://huggingface.co/aomar85/fine-tuned-marBERT_latest
https://huggingface.co/aubmindlab/bert-base-arabertv02

100 Chapter 6. Entity Linking

6.4.2 Experiments’ Set Two: Different Datasets

The objective of this set of experiments is to measure the effect of using different

datasets (described in Table 4.10.) on the performance of the fine-tuned BERT mod-

els. Table 4.10 illustrates the results of six experiments where D0, D1, D2, D3, D4, D5,

D6 and D8 datasets were used. (M4) denotes the ArabGlossBERT(Al-Hajj & Jarrar,

2021) which was trained on D0 dataset. The fine-tuned models (M4 to M8) were evalu-

ated against the ArabGlossBERT test set only, as these models are fine-tuned using the

combined datasets (D1 to D4) where only True pairs were added from the WikiGloss-

Context True pairs before generating the False pairs to the ArabGlossBERT (Al-Hajj

& Jarrar, 2021) dataset. The results show that the more pairs from the WikiGlossCon-

text are combined with the ArabGlossBERT the less performance is. The fine-tuned

model on D1 (ArabGlossBERT+Wiki23kTrue) dataset achieved the highest accuracy

(82%). Followed by the fine-tuned model on D2 (ArabGlossBERT+Wiki40kTrue) with

(80% accuracy. The model fine-tuned on the WikiGlossContextfalse-local achieved the

worst results accuracy (60%) 3.

With reference to the results reported in in Table 6.4, adding 23k True pairs to the

ArabGlossBERT (Al-Hajj & Jarrar, 2021) achieved the highest accuracy and f1-score

(82%) among the other experiments. In a conclusion to the above results, adding True

pairs to the ArabGlossBERT (Al-Hajj & Jarrar, 2021) dataset does not yield in achiev-

ing better accuracy compared to the results of the original ArabGlossBERT (Al-Hajj

& Jarrar, 2021) denoted by M4,which achieved 84% accuracy. Besides, increasing the

number of True pairs gradually does not necessarily give the same effect on the accu-

racy obtained. For example, adding 40k, and 200K True decreases the accuracy to

(80%, and 73%) respectively, while adding 400K True decreases the accuracy to 76%

compared to adding 23k True pairs.

3This dataset does not combined with D0 (ArabGlossBERT (Al-Hajj & Jarrar, 2021)).

6.4. Experiments’ Results 101

The experiments in this set contribute to the research question RQ2 part which stated

(Given a word in a sentence (whether this word refers to a named entity or a concept,

i.e., unnamed), what is the most accurate way (different datasets) to disambiguate the

semantics of this word with a node in a knowledge graph like Wikidata?. From the

results presented in Table 4.10, it is clear that the best-performing model to classify

concepts (non named entities) is the ArabGlossBERT (Al-Hajj & Jarrar, 2021) denoted

by M4. This result confirms that combining lexicons data (concepts) with named

entities (different data sources) does not increase the accuracy of classifying concepts,

instead, the results get even worse. To prove the other claim, whether models trained on

ArabGlossBERT or combined with it can give better results in linking named entities to

a knowledge graph, in the next section, a disambiguation evaluation will be conducted

to select the best performing model from the pre-trained models in sections (6.4.1, and

6.4.2).

Table 6.4: Achieved results (%) after fine-tuning Arabertv02 using
different datasets (Table 4.10) using ArabGlossBERT test

.
Model # Dataset False True Avg Accuracy

(M4). (D0).
ArabGlossBERT

(Al-Hajj & Jarrar, 2021)

precision 85 81 83

84Recall 93 66 80

F1-score 89 72 81

(M5). (D1). ArabGloss+Wiki23KTrue

precision 85 73 79

82Recall 86 79 78

F1-score 70 87 82

(M6). (D2).ArabGloss+Wiki40KTrue

precision 83 72 77

80Recall 88 62 75

F1-score 86 67 76

(M7). (D3.)ArabGloss+Wiki200KTrue

precision 72 83 78

73Recall 98 20 59

F1-score 83 33 58

(M8). (D4.)ArabGloss+Wiki400KTrue

precision 76 78 77

76Recall 95 35 65

F1-score 84 48 66

The model M9 was evaluated using two test sets, the first is the WikiGlossContextcross-related

https://huggingface.co/aubmindlab/bert-base-arabertv02

102 Chapter 6. Entity Linking

denoted by D5 (see Table 4.8). M9 achieved (97%) on the three metrics (precision, re-

call, and accuracy), and (96%) on the f1-score. Moreover, the results presented on Table

6.5 show that the model achieved (76%, 69%, 70%, and 77%) on (precision, recall, f1-

score and accuracy) respectively when evaluated on the ArabGlossBERT (Al-Hajj &

Jarrar, 2021) test .

The models M10 and M11 were also evaluated on the WikiGlossContextfalse-local test set

(see Table 4.9). M10 and M11 achieved 93% and 94% accuracy on all metrics. However,

the model M10 that was trained on a combined dataset D6 achieved better performance

on the ArabGlossBERT (Al-Hajj & Jarrar, 2021) compared to the model M11 which

was trained on the WikiGlossContextfalse-local dataset alone.

In short, the results presented in Table 6.5 supports our findings in that combining the

WikiGlossContext with ArabGlossBERT (Al-Hajj & Jarrar, 2021) does not improve

the performance of the fine-tuned models on the WSD task to classify non-named en-

tity mentions aka ”concepts”.

Table 6.5: Achieved results (%) after fine-tuning Arabertv02 using dif-
ferent datasets (Table 4.10 on WikiContextGloss and ArabGlossBERT

tets

WikiGlossContext ArabGloss

Model# True False Avg True False Avg

(M9).
(D5.)

ArabBERTGloss +
WikiGlossContextcross-related

Precision 97 97 97 78 74 76
Recall 99 94 96 92 54 69
F1-score 98 96 97 82 65 70
Accuracy 97 77

(M10).
(D6.)

ArabBERTGloss +
WikiGlossContextfalse-local

Precision 90 98 94 61 77 69
Recall 98 88 93 45 87 66
F1-score 94 92 93 52 45 67
Accuracy 93 73

(M11). (D8.)
WikiGlossContextfalse-local

Precision 90 98 94 38 71 55
Recall 98 89 94 41 69 55
F1-score 94 93 94 40 70 55
Accuracy 94 60

To sum up all the metadata about the fine-tuned models, the eleven pre-trained models’

(Table 6.3, and Table 6.4) information are summarized in Table 6.6 and will be denoted

https://huggingface.co/aubmindlab/bert-base-arabertv02

6.4. Experiments’ Results 103

in the next section by the model number.

Table 6.6: A summary of the pre-trained models’ information

Model # Model used Dataset

M1 AraBERTv2 (D7.)WikiContextGlosscross-related

M2 bert-multilingual (D7.)WikiContextGlosscross-related

M3 MarBERTv2 (D7.)WikiContextGlosscross-related

M4 AraBERTv2 (D0). ArabGlossBERT(Al-Hajj & Jarrar, 2021)

M5 AraBERTv2 (D1).ArabGloss+Wiki23KTrue

M6 AraBERTv2 (D2).ArabGloss+Wiki40KTrue

M7 AraBERTv2 (D3).ArabGloss+Wiki200KTrue

M8 AraBERTv2 (D4).ArabGloss+Wiki400KTrue

M9 AraBERTv2 (D5.)ArabGloss+WikiGlossContextcross-related)

M10 AraBERTv2 (D6.)ArabGloss+WikiGlossContextfalse-local)

M11 AraBERTv2 (D8.)WikiGlossContextfalse-local

Remarkable Notes About the Results

Regarding the results achieved by the fine-tuned models (M1 M2, M3, M9,M10, and

M11) presented in Table 6.3 and Table 4.10. We can see that the achieved accuracy

is high (97%, 96% ,97% ,97% ,93%, and 94%) respectively on the WikiGlossContext

test set. This test set is taken from the WikiGlossContext corpus, which is part of the

data that the models were trained on during the fine-tuning phase. The data in this

corpus has the same characteristics (glosses and contexts are taken from Wikidata and

Wikipedia); thus, the fine-tuned models achieved high results on the test set. Regard-

less of the fact that the test set was split in a way that prevented information leaks

between the three sets (train, validation, and test) 4.

4for more details on the data sets splitting please refer to chapter 4, section 4.5

104 Chapter 6. Entity Linking

Because of these high accuracy achieved, we studied the nature of the dataset pairs

in-depth, where we noticed similarities between glosses taken from Wikidata’s descrip-

tion and contexts taken from Wikipedia (see picture 6.3). The first sentence taken as

the context in our case from Wikipedia often forms a sentence similar to the defini-

tion taken from Wikidata, although they do not exactly match. Thus we came to the

conclusion that the data is over-fitted. However, we can not avoid this case, because

we could not find another contexts’ source that contains the named entity, because

these pairs are difficult to extract and there are no other datasets to use. However, in

section 6.4.3, we evaluate the models on an external dataset, we called (Wojood-NED).

The True pairs were formulated from the contexts found on Wojood-NED while the

glosses were taken from two different sources (Wikidata and Wikipedia). The results

are presented in Table 6.9 and 6.10, where the best-performing model M1 achieved 71%

on Wikidata glosses, while M5 achieved 68 % on Wikipedia glosses.

We note that the accuracy decreased when evaluating the fine-tuned models against the

external dataset (Wojood-NED), and this decrease is justified, given that the models

were primarily trained on over-fitted data, as mentioned earlier. While the data source

differed in the external dataset because the contexts used are not necessarily similar to

the definitions, as in the WikiGlossContext dataset on which the models were trained

on. Details of this evaluation are presented in the following sections.

6.4.3 Experiments’ Set Three: Disambiguation Evaluation

In this section, we evaluated which of the eleven fine-tuned models (see Table 6.6) per-

forms better in entity disambiguation using the named entities from the Wojood-NED

corpus (see section 4.3.2).

Notice that the evaluation of entity disambiguation is different from context-gloss binary

classification evaluation conducted in sections (6.4.1 and 6.4.2). Previously each pair

of sentences (context, gloss) was classified whether it is True if the pair match, or

6.4. Experiments’ Results 105

False if it does not. The purpose of the disambiguation evaluation, in this section,

is to link the extracted named entity with its corresponding node in Wikidata. This

evaluation was done using two components only (candidate lookup and NED). Though,

instead of the NER tagging component, the named entities and their contexts were used

from the Wojood-NER corpus5. Recall that fine-tuning the BERT model for named

entity recognition is beyond this thesis’s objectives. Thus NER was done manually

using the aforementioned corpus which contains software-specific tags. To do this,

we take each of the extracted named entities in the Wojood-NED corpus and pass it

to the Elasticsearch lookup component. The lookup component retrieves all possible

candidates from Wikidata. The list of candidates is then passed to the NED component

as pairs (context contained named entity, and candidate glosses retrieved from the

Wikidata). The NED component calculates the raw prediction for each label (True,

False) for the list of pairs. The raw predictions are then converted to probabilities

using a softmax layer. Finally, we return the Wikidata Q-identifier with the maximum

probability of the True class. Recall that the Wojood-NED corpus was manually labeled

with the correct Wikidata identifier for each named entity and its NER class tag. Based

on that, the overall accuracy for each of the eleven fine-tuned models is calculated

separately, in addition to the accuracy per NER class. This evaluation was done in two

ways: (1) we considered the Wikidata description field as a gloss, and (2) we considered

the Wikipedia summary (first one to two sentences) as a gloss. The Tables (6.7, and

6.8) show the overall accuracy using only two components (the candidate lookup and

the NED component). While the Tables (6.9, and 6.10) show the results of the two

evaluations on the NED component alone, the best achieved results are highlighted in

bold.
5This thesis did not implement the NER component as a BERT model API. However, for evaluation

purposes, we manually annotated the Wojood-NED corpus with the six new software tags as illustrated

earlier in the methodology chapter 4, section 4.3.1.

106 Chapter 6. Entity Linking

Overall Disambiguation Evaluation

To evaluate the overall accuracy of named entity disambiguation, the three components

(NER, candidate lookup, and the NED) are needed to be evaluated together. Since

we did not implement the NER ourselves and we used existing data software-specific

named entities from Wojood-NED. In this section, only software-specific named en-

tities’ classes will be considered in the evaluation of the two components(Candidate

lookup and NED). In addition to the evaluation of the NED component in the follow-

ing section. Our evaluation in this section includes only two components. We used the

dataset Wojood-NED (refer to chapter 4, section 4.3) for evaluation. This was done

using 735 of True and False pairs on Wikidata, and 727 pairs on Wikipedia (since

not all nodes on Wikidata are linked to Wikipedia, some of the named entities do not

have Wikipedia descriptions, and these named entities were not considered). We took

a candidate entity and pass it to the candidate lookup, then we retrieved the list of all

candidates. For each candidate entity, we form the pairs by contacting the context of

the named entity and its candidates returned by the candidate lookup. After that, the

NED component is used to disambiguate them. We ranked the retrieved results from

the NED after converting the raw predictions into probabilities using a soft-max layer.

After that, the node with the highest probability from the True label is linked to the

named entity. In this evaluation, all the named entities whether they have a True gloss

or do not were used to assess the overall accuracy.

Recall that the candidate component was evaluated alone in chapter 4.2, section 5.5

and achieved an accuracy of (70%). Besides, the NED component was evaluated alone

in section 6.4.3 of this chapter, and achieved an accuracy of (84%) using the model

denoted by M5 using glosses from Wikipedia on an external dataset (Wojood-NED).

The Tables (6.7 and 6.8) depict the overall accuracy of only two main components (the

candidate lookup and the NED). It is clear from the results in the two tables that the

overall accuracy, in general, was not high regardless of the source of the glosses (from

6.4. Experiments’ Results 107

Wikidata or Wikipedia). Moreover, The overall accuracy of the models in the two tables

was close with an advantage when the glosses of Wikidata were used. Using Wikipedia

glosses the model denoted by M5 achieved the highest accuracy (74%). While the model

denoted by M1 achieved the highest accuracy (66%) using glosses from Wikidata.

Table 6.7: Achieved results(%) per class after evaluating the two com-
ponents (Candidate lookup and NED) on the Wojood-NED corpus using

Wikidata description as a gloss

Entity Class M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

APPLICATION
(26)

69%
(18)

35%
(9)

27%
(7)

46%
(12)

69%
(18)

31%
(8)

31%
(8)

35%
(8)

50%
(9)

42%
(13)

50%
(11)

FRAMEWORK
(130)

62%
(80)

62%
(74)

57%
(68)

52%
(79)

51%
(66)

51%
(60)

46%
(50)

38%
(78)

60%
(66)

52%
(67)

38%
(50)

PL
(300)

77%
(232)

61%
(183)

51%
(154)

59%
(178)

78%
(235)

62%
(185)

53%
(158)

54%
(163)

88%
(203)

60%
(181)

64%
(191)

PLATFORM
(23)

52%
(12)

30%
(7)

35%
(8)

70%
(16)

26%
(6)

17%
(4)

9%
(2)

30%
(7)

48%
(11)

48%
(11)

48%
(11)

PP
(6)

67%
(4)

50%
(3)

17%
(1)

17%
(1)

33%
(2)

17%
(1)

0%
(0)

50%
(3)

50%
(3)

17%
(1)

17%
(1)

SD
(57)

72%
(41)

19%
(11)

21%
(12)

63%
(36)

23%
(13)

9%
(5)

5%
(3)

47%
(27)

56%
(32)

61%
(35)

60%
(34)

WEBSITE
(193)

50%
(97)

34%
(65)

33%
(64)

42%
(82)

45%
(87)

32%
(62)

35%
(67)

39%
(75)

42%
(81)

52%
(100)

38%
(73)

Overall Accuracy:
Total count: 735

66%
(484)

48%
(352)

47%
(344)

55%
(404)

58%
(427)

44%
(325)

39%
(288)

49%
(361)

55%
(405)

56%
(408)

50%
(371)

Table 6.8: Achieved results(%) per class after evaluating the two com-
ponents (Candidate lookup and NED) on the Wojood-NED corpus using

Wikipedia description as a gloss

Entity Class M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

APPLICATION
(26)

58%
(15)

46%
(12)

50%
(13)

23%
(6)

65%
(17)

62%
(16)

62%
(16)

42%
(11)

38%
(10)

42%
(11)

27%
(7)

FRAMEWORK
(119)

65%
(77)

67%
(80)

59%
(70)

60%
(71)

63%
(75)

45%
(54)

39%
(46)

61%
(72)

65%
(77)

38%
(45)

48%
(57)

PL
(297)

66%
(197)

57%
(170)

61%
(180)

64%
(189)

84%
(284)

70%
(209)

42%
(126)

61%
(182)

53%
(157)

50%
(149)

65%
(192)

PLATFORM
(23)

70%
(16)

52%
(12)

48%
(11)

22%
(5)

43%
(10)

17%
(4)

17%
(4)

39%
(9)

26%
(6)

61%
(14)

65%
(15)

PP
(6)

33%
(2)

67%
(4)

33%
(2)

0%
(0)

50%
(3)

17%
(1)

17%
(1)

83%
(5)

50%
(3)

17%
(1)

17%
(1)

SD
(56)

27%
(15)

25%
(14)

27%
(15)

13%
(7)

88%
(49)

66%
(37)

77%
(43)

41%
(23)

21%
(12)

9%
(5)

46%
(26)

WEBSITE
(200)

51%
(101)

44%
(87)

51%
(102)

37%
(73)

49%
(98)

30%
(60)

24%
(48)

38%
(75)

36%
(71)

34%
(67)

45%
(89)

Overall Accuracy:
Total count: 727

58%↓
(423)

52%↑
(379)

54%↑
(393)

48%↓
(351)

74%↑
(536)

52%↑
(381)

39%
(284)

52%↑
(377)

49%↓
(354)

40%↓
(292)

53%↑
(387)

108 Chapter 6. Entity Linking

The summery of two Tables (6.7, ad 6.8) results came as follows:

• The two components together (the candidate lookup and the NED) achieved

the highest accuracy (74%) when using the model denoted by M5 in the NED

component, and glosses from Wikipedia.

• The two components together (the candidate lookup and the NED) achieved

the highest accuracy (66%) when using the model denoted by M1 in the NED

component, and glosses from Wikidata.

• Table 6.7 results showed that M1 achieved the highest accuracy of (62%, 67%,

and 72%) in the classes (FRAMEWORK, PP, and SD) respectively. Besides, the

model achieved the highest accuracy with a tie with M5 in the APPLICATION

class with an accuracy of 69%.

• The bar chart 6.2 depicts the change in the overall change accuracy of the two

components together (Candidate lookup and the NED) when glosses were taken

from Wikidata vs Wikipedia. It is clear from the chart that some classes’ ac-

curacy increased while others’ accuracy increased when Wikipedia’s glosses were

used.

The SD class achieved the highest accuracy change (65%). As the the overall

accuracy decreased from 88% using Wikipedia glosses to 23% using Wikidata

glosses (refer to Table 6.7, and Table 6.8).

By investigating the results we found that the named entity HTML was linked to

the node HTML5(Q2053) when the Wikidata description was used rather than

the correct match HTML(Q8811). While, when the Wikipedia description was

used, the model could disambiguate the named entity and link it to the correct

node HTML(Q8811). This named entity is the most repetitive one in its class

and was linked wrong 38 times when the Wikidata description was used.

6.4. Experiments’ Results 109

Figure 6.2: The overall accuracy change for the model M5 when using
Wikidata glosses (Table 6.7) vs using Wikipedia glosses (Table 6.8)

Generally, the main two reasons for the poor linking results are: first, due to errors

propagating from the candidate lookup component to the NED. Recall that the can-

didate lookup component alone achieved 70% accuracy. This is due to the fact that

80% of the named entities that does not have correct match do not have a correspond-

ing Wikidata node (i.e. True gloss).Besides, User typos came in second place with a

percentage of 16%. These root causes affected the candidate lookup component and

caused errors to propagate to the NED component. Recall that we transferred the NED

problem to a WSD binary classification problem in a similar way followed by (Al-Hajj

& Jarrar, 2021; Kannan Ravi et al., 2021). In this method, the NED component re-

trieved the correct gloss with the highest probability of the True label regardless of the

fact it has a higher probability than the False label or not. Wherefore, In the case of

all passed candidates (glosses) are False. The NED component will retrieve a wrong

gloss based on the aforementioned mechanism.

Outlook: This problem can be mitigated in many ways, the most important is taking

care of the Arabic content on Wikidata by filling in the missing information about Ara-

bic named entities such as descriptions and aliases. In addition, to reduce the irrelevant

data for nodes with the same surface forms as much as possible, the entity type (NER

110 Chapter 6. Entity Linking

Tag) of the named entity can also be matched with Wikidata types(instance of :P21 in

Wikidata) when querying the named entity. However, this process needs to match the

NER tags with the Wikidata types if any.

Figure 6.3: Cosine-similarity between contexts and glosses

The second reason is the contexts that were extracted from Wikipedia and used to train

the models. Recall that the contexts were taken from the first sentence of Wikipedia.

However, this sentence is similar to the Wikidata description of the named entity (both

define the named entity).

The histogram chart 6.3 depicts the counts of the pairs based on cosine-similarity be-

tween the contexts and the glosses. It is clear from the graph that the similarity between

the context and glosses is high with a median of 40% between pairs. To sum up, we

could say that generally the data used to train the models is over-fitted, as the first

sentence from Wikipedia mostly forms a definition of the named entity as said earlier,

which is similar to Wikidata’s description.

Because of the over-fitting problem in the datasets, the NED component was separately

evaluated on an external dataset that is taken from the Wojood-NED corpus to measure

6.4. Experiments’ Results 111

the real accuracy.

NED Component Disambiguation Evaluation

This section, the NED component was evaluated against pairs taken from Wojood-NED

corpus. To evaluate the NED component alone. The candidate lookup component was

evaluated against only named entities with have correct matches. The NED model was

evaluated against (641) pairs on Wikidata glosses and (638) pairs on Wikipedia because

not every Wikidata node has a corresponding Wikipedia node. The results per class in

Table 6.9 came as follows:

Table 6.9: Achieved results(%) per class after evaluating the fine-tuned
models on the Wojood-NED test corpus using Wikidata description as

a gloss

Entity Class M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

APPLICATION
(20)

82%
(18)

41%
(9)

32%
(7)

55%
(12)

82%
(18)

36%
(8)

36%
(8)

36%
(8)

41%
(9)

59%
(13)

50%
(11)

FRAMEWORK
(98)

82%
(80)

76%
(74)

69%
(68)

81%
(79)

67%
(66)

61%
(60)

51%
(50)

86%
(78)

88%
(86)

68%
(67)

51%
(50)

PL
(280)

83%
(232)

65%
(183)

55%
(154)

64%
(178)

84%
(235)

66%
(185)

56%
(158)

58%
(163)

73%
(203)

65%
(181)

68%
(191)

PLATFORM
(21)

57%
(12)

33%
(7)

38%
(8)

76%
(16)

29%
(6)

19%
(4)

10%
(2)

33%
(7)

72%
(11)

52%
(11)

52%
(11)

PP
(6)

67%
(4)

50%
(3)

17%
(1)

17%
(1)

33%
(2)

17%
(1)

0%
(0)

50%
(3)

50%
(3)

17%
(1)

17%
(1)

SD
(51)

82%
(41)

22%
(11)

24%
(12)

71%
(36)

25%
(13)

10%
(5)

6%
(3)

53%
(27)

63%
(32)

69%
(35)

67%
(34)

WEBSITE
(165)

59%
(97)

39%
(65)

39%
(64)

56%
(82)

53%
(87)

38%
(62)

41%
(67)

45%
(75)

49%
(81)

61%
(100)

44%
(73)

Overall Accuracy:
Total count: 641

76%
(484)

55%
(352)

49%
(314)

63%
(404)

67%
(427)

51%
(325)

45%
(288)

56%
(361)

66%
(425)

64%
(408)

52%
(335)

• M1 outperformed the rest of the models in six classes (PP, and SD) with accuracy

(67%, and 82%) respectively. While it achieved the highest accuracy with a

tie with M5 in the class APPLICATION, with an accuracy of 82%. M1 also

outperformed the rest of the models with an overall accuracy of 76% .M5 ranked

third with an overall accuracy of 67%.

• M4 achieved the highest accuracy in the (PLATFORM) class with (76%). The

model ranked fifth with overall accuracy of 63%.

112 Chapter 6. Entity Linking

Figure 6.4: The accuracy change comparison per class for the M5

model results (Table 6.8 vs Table 6.10)

• M5 outperformed the rest of the fine-tuned models in the (PL) class, as it achieved

(84%) respectively.

• M9 achieved the highest accuracy in the (FRAMEWORK) class with accuracy

of (88%), and ranked third with an overall accuracy of 66%.

• M10 outperformed the rest of the models in the WEBSITE classes with 61%

accuracy. The model ranked fourth with an overall accuracy of 64%.

• By investigating the results achieved by M5 in the overall components linking

accuracy (Table 6.8) vs the NED component linking accuracy (Table 6.10). It is

clear that the accuracy increased by 10% when evaluating the NED component

alone. The bar chart 6.4 depicts the overall accuracy change per class between

the two experiments.

If we look in depth at the results of the FRAMEWORK class that achieved

the highest percentage of change in accuracy (20%). The majority of the wrong

matched nodes was due to the end user typos. Furthermore, the named en-

tity SEO(Q180711), which is the most repetitive entity was linked to Yoast

SEO(Q68342360) several times, which is another node on Wikidata.

6.4. Experiments’ Results 113

Table 6.10: Achieved results(%) per class after evaluating the fine-
tuned models on the Wojood-NED test corpus using Wikipedia descrip-

tion as a gloss

Entity Class M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

APPLICATION
(22)

68%
(15)

55%
(12)

59%
(13)

27%
(6)

77%
(17)

73%
(16)

73%
(16)

50%
(11)

45%
(10)

50%
(11)

32%
(7)

FRAMEWORK
(90)

86%
(77)

89%
(80)

78%
(70)

79%
(71)

83%
(75)

60%
(54)

51%
(46)

80%
(72)

86%
(77)

50%
(45)

63%
(57)

PL
(279)

71%
(197)

61%
(170)

65%
(180)

68%
(189)

89%
(284)

75%
(209)

45%
(126)

65%
(182)

65%
(157)

53%
(149)

69%
(192)

PLATFORM
(21)

76%
(16)

57%
(12)

52%
(11)

24%
(5)

48%
(10)

19%
(4)

19%
(4)

43%
(9)

29%
(6)

67%
(14)

71%
(15)

PP
(6)

33%
(2)

67%
(4)

33%
(2)

0%
(0)

50%
(3)

17%
(1)

17%
(1)

83%
(5)

50%
(3)

17%
(1)

17%
(1)

SD
(51)

29%
(15)

27%
(14)

29%
(15)

14%
(7)

96%
(49)

73%
(37)

84%
(43)

45%
(23)

24%
(12)

10%
(5)

51%
(26)

WEBSITE
(169)

60%
(101)

51%
(87)

60%
(102)

43%
(73)

58%
(98)

36%
(60)

28%
(48)

44%
(75)

42%
(71)

40%
(67)

53%
(89)

Overall Accuracy:
Total count: 638

66%↓
(423)

59%↑
(379)

62%↑
(393)

55%↓
(351)

84%↑
(536)

60%↑
(381)

45%
(284)

59%↑
(377)

53%↓
(336)

46%↓
(292)

61%↑
(387)

While the results per class in Table 6.10 came as follows:

• M1 outperformed the rest of the models in one class (PLATFORM) with accuracy

(76%). While it achieved the highest accuracy with a tie with the model M3 in the

class WEBSITE, with an accuracy of (60%). M1 ranked second with an overall

accuracy of 66%. While M3 ranked third with an overall accuracy of 62%.

• M2 outperformed the rest of the fine-tuned models in the(FRAMEWORK) class,

as it achieved (89%) accuracy. The model overall accuracy is 59%.

• M5 outperformed the rest of the fine-tuned models in three classes (APPLICA-

TION, PL, and SD), as it achieved (77%, 89%, and 96%) accuracy respectively.

While it achieved the highest accuracy with a tie with (M6) in the class GPE with

an accuracy of 56%. The model advanced to the first rank with overall accuracy

of 84%.

• M8 achieved the highest accuracy in the class (PP) with accuracy of (83%). The

model achieved fifth rank with overall accuracy of 59%.

114 Chapter 6. Entity Linking

These two linking experiments contribute to the research question RQ3 which stated:Given

a named entity in a sentence (especially in software-related discussion fo-

rums), what is the best performing fine-tuned Arabic Bert model to link

this entity with a node in Wikidata?. The results in the two tables show that

M5 outperformed the rest of the models with overall accuracy (84%) using Wikipedia

glosses. This model was trained on the D1 ArabGlossBERT(Al-Hajj & Jarrar,

2021) mixed with 23k True pairs from the WikiGlossContext.

The possible reason for this model to outperform the rest models is that it is trained

on ArabGlossBERT(Al-Hajj & Jarrar, 2021) mixed with 23k True pairs from the

WikiGlossContext dataset. Besides, the Wikipedia descriptions is richer in informa-

tion, more precise, and longer compared to Wikidata descriptions.

As a conclusion, we can find that combining WikiContextGloss with ArabGlossBERT

(Al-Hajj & Jarrar, 2021) helps in achieving better results in Model M5. And using

Wikipedia’s description as a gloss made noticeable effects on the linking performance

of some models. This may be due to the fact that Wikipedia’s summary is much longer,

more descriptive, and richer in information than the Wikidata description. However,

the results of the best performing model M1 slightly decrease when using Wikipedia

instead of Wikidata description. As a result, the Wikidata description will be used as a

gloss in the implementation of entity linking process, because it achieves a remarkable

performance. Besides, not all Wikidata nodes are linked to Wikipedia.

6.5 Implementing Linguist APIs for Entity Linking

In this section, we demonstrate the implementation of the entity disambiguation and

linking. This demonstration was implemented and deployed as part of WSD+NED

framework, developed by SinaLab at Birzeit University. The WSD+NED takes a text

as input, and returns all tokens in this text with their disambiguated nodes, as the

following: (1) it parses the text and recognizes the named entities in the text using

6.5. Implementing Linguist APIs for Entity Linking 115

the Wojood BERT Model (Jarrar et al., 2022) if a token is not recognized as a named

entity it is then passed to (2) ArabGlossBERT model (Al-Hajj & Jarrar, 2021) to dis-

ambiguate its linguistic meaning (i.e., link it with a linguistic concept in a lexicon).

For those that are recognised as named entities, they are passed to the (3) candidate

lookup component which intern returns all the possible candidate list of each recog-

nized named entity and passed to (4) NED BERT model to link them to Wikidata node.

It is worth noting that the Wojood BERT Model is, currently, able to recognize 21

classes, i.e., it does not support any of the six software-specific named entities yet. In

the future, we will train a NER model to support the 27 named entities (the NER com-

ponent was not implemented in this thesis. But, for evaluation purposes, we manually

annotated the Wojood-NED corpus with the new six software-specific tags). However,

as mentioned earlier, the best performing model was evaluated on a software-specific

named entities. Thus, it is guaranteed that the deployed model in the NED web service

behaves well in linking software-specific named entities.

Figures (6.5, 6.6, and 6.7) are working examples for the entity linking using the online

Demo (https://ontology.birzeit.edu/tools/ALMA.html):

Figure 6.5: Example 1: Qualcomm has introduced a new chipset for
smartwatches.

https://ontology.birzeit.edu/tools/ALMA.html

116 Chapter 6. Entity Linking

Figure 6.6: Example 2: Mark Zuckerberg founded Facebook

Figure 6.7: Example 3: YouTube announced that it has started rolling
out picture-in-picture support

6.6 Named Entity Linking in Software-related Text

In this section, we present a set of usage scenarios for software-specific named entities

disambiguation and linking for the Arabic language. Our goal is this section to illus-

trate how the research conducted in this thesis contributes to answering RQ1a:(Given

6.6. Named Entity Linking in Software-related Text 117

a sentence about a software-related text (e.g., requirement, review, bug

report), how understanding the semantics of this sentence improves under-

standing and classifying these issues?).

The process of annotating named entities inside a free text is beneficial in semantic

knowledge, and it has many applications such as improving the search engines’ accu-

racy. It is important in recommender systems and chat-bots applications. The common

in all these applications is that relevant text is distinguished from non-relevant.

For example, understanding the semantics of named entities can take searching to the

next level by introducing the concept of searching for objects rather than searching for

strings. Knowing the named entity inside the query and understanding its semantics

yields a smarter search and more accurate and relevant result. Besides, linking entities

with KGs can help in enriching the result of the query with important information

about the named entity. The following example illustrates the idea. If a developer

wants to search about ”The developer of python”, without linking the named entity

Python with a KG, it is impossible for the search engine that searches the text inside

documents to be able to directly retrieve relevant results that have the answer ”Guido

van Rossum”, leading to false negatives. The following is a possible scenarios that can

help answer the question.

Scenario 1: A company (X) owns a mobile application called (Shahid/شاهد) that is

hosted in both the App-store and Play-store. This company has two development

teams, one for each native platform. So, the company collects feed-backs from the

App reviews posted on the mentioned platforms,in addition to reviews on its official

website on the social networking websites (Facebook, Twitter) and store all the reviews

on a database to be processed later. The user feedback is provided as free text that

has many slangs and dialects. The company wants to filter and classify all the com-

ments that contain the app name (Shahid/شاهد) but not the word (Watch/شاهد) or the

118 Chapter 6. Entity Linking

word ,(Witness/شاهد) or other different meanings if any. Besides, the company wants

to know from the collected reviews, what reviews related to issues in the Android OS

from those related to Apple OS, and wants to know if the corresponding version of the

platform in case only the name mentioned in the text (e.g Marshmellow –> Android

6.0). In order to forward the bugs to each department automatically without wasting

much time reading and analyzing each review.

Our entity linking tool can help the company X, by extracting such named entities

from the free text and linking the node to Wikidata. For example, given the following

app review دونت) على لايعمل Shahid/شاهد doesn’t work on Donut),our tool can extract

the named entity types by tagging (Shahid/شاهد) as an APPLICATION and distin-

guishes it from the other words with meanings ”Watch” or ”Witness”, and the word

(Donut/دونت) as PLATFORM, which is different than the word from which means

dessert food ”Donut”, by linking it to the Wikidata node Q20741039. By doing so, the

company can easily know what version number the Android Donut (Android 1.6) even

though it is not mentioned in the app review and can help to know to which platform

the Donut belongs from the information found on the Wikidata node (Property:P348

software version identifier, and P31 instance of).

Scenario 2: The ministry of education wants to adopt an Electronic Archiving system

to replace paperwork. It prepares an SRS document for concerned software compa-

nies. The document contains free text to describe exactly how the Archiving system

is supposed to work and the technology stack to use (functional and non-functional

requirements).

Candidate companies are seeking a smart tool to (1) extract software-specific named

entities, and (2) classify functional requirement based on the predefined user roles (e.g.

System admin, Auditor, Archive user, etc). The smart tool should search only for rel-

evant text, and provides detailed information for the development team about every

https://www.wikidata.org/wiki/Q20741039

6.7. Summary 119

software-specific term.

For example, the sentence بين) العمل سير حركات بدون يومي بشكل والواردة الصادرة الـكتب أرشفة يتم حيث
پدف بصيغة الخادم على مجلدات في تخزينها يتم SQL بيانات قاعدة على العامة الادارات) the company wants to

extract technical terms from the sentence above and get more information about each

software-specific term (i.e. named entity). From the functional requirement above, the

tool should distinguish the world Server/خادم from Servant/خادم and link it to the node

Q44127, so the later should be discard from the results. Similarly, the named entity

pdf will be classified as a software standard and linked to the node Q42332. Moreover,

the tool should list information about pdf (e.g. MIME Type, available versions, official

website, stack-overflow tag, etc.)

The company can easily extract and classify software-specific named entities such as

programming languages, software standards, and user roles) and then classify functional

requirements based on the user roles, without the need to manually do that using our

presented tool.

For example, The Functional requirement الخدمات) بوابة مع متجانسة تكون أن يجب النظام ألوان
للنظام. العام والشكل والخطوط الألوان تعديل النظام لمدير ويمكن للنظر ومريحة (الإلـكترونية Our tool can extract

job titles because they are named entities, such as النظام) System/لمدير administrator) from

the text and map them to the user roles, and then return all functional requirements

related to this role (”system admin”).

6.7 Summary

In this chapter, the entity disambiguation problem is defined in section 6.2, the ex-

perimental setup, experimental hyperparameters, and the experiments’ tracking were

addressed in section 6.3. While the results of the experiment were reported and dis-

cussed in section 6.4. All the fine-tuned models were subjected to disambiguation

evaluation to select the best-performing model for the NED component. Moreover, the

implementation and demonstration of the entity linking tool is presented in section 6.5.

120 Chapter 6. Entity Linking

Finally, in section 6.6, a couple of illustrative scenarios were presented for the entity

linking tool usage in the software-engineering domain.

121

Chapter 7

Conclusion and Future Work

7.1 Introduction

In this chapter, work contributions have been summarized and concluded. In section

7.2, we conclude our work, and in section 7.3, challenges and limitations were explored

and addressed for future work. Finally, threats to validity are provided in the last

section 7.4.

7.2 Conclusion

In the previous chapters, we introduced the problem of Arabic named-entity disam-

biguation and linking. In the background chapter, we included the needed concepts

and background knowledge for the terminologies embodied in this thesis. The entity

linking tools and the research gap were discussed in the literature review chapter. This

was done by performing a literature review to reveal the methodologies, limitations,

and challenges faced by the research community. After that, we presented an entity

linking components for Arabic named entity disambiguation. This includes data col-

lection steps and annotated corpus building necessary to train the models.

In this research, we constructed a dataset for Arabic software-specific named entities

called Wojood-NED contains (2,650 sentences, with 50,449 tokens). This dataset

122 Chapter 7. Conclusion and Future Work

was originally taken form Wojood corpus (Jarrar et al., 2022) that is capable of ex-

tracting 21 named entities, and enriched with an additional six software-specific named

entities’ and named entities are linked to the Wikidata nodes using the corresponding

Q-identifier.

Wikidata is a large knowledge graph to which most of the nodes have been linked to

Wikipedia using site-links. Although the data is stored in a structured way on Wiki-

data, there are some problems that have been observed during the process of preparing

the data in this research, most of them are related to the quality and conformity of

the data entered, especially in the “also known as” field that is used to add the syn-

onyms of names aka aliases. This field contains false information that does not belong

to the real name, for example (الأوروبية الذهبية الـكرة European/جائزة golden ball) is an

alias that was given to many named entities of type human (Footballer) such as ول)
Paul/برايتنر Breitner, to mention a few. In addition, the field often contains erroneous

symbols, formatting and mixed language rather than Arabic. It is known that this field

is strongly related to the success of the process of search using the candidate lookup as

well as the construction of the WikiGlossContext corpus. Recall that the WikiGloss-

Context corpus contains all Arabic named entities from Wikidata that are linked to

Wikipedia. These named entities belongs to different named entity classes including

software-specific classes. Hence, its is a domain-agnostic corpus that can be used to

link any named entity type. This important, because deep-learning models are data

hungry. Besides, this ensures the effectiveness of the model when new named entities

are introduced. Therefore, there was a need to manually audit the data to avoid those

problems that are difficult to detect automatically. Moreover, out of a total of 95

million records, there are only about one million records that have a complete Arabic

information, such as label and description. It was noted that the Wikidata description

field is short in general, and the description came with a general meaning mostly in

a way that does not describe the field accurately. In general, the same description is

used for a large group of named entities of same type (i.g football players are often

7.2. Conclusion 123

describes as قدم كرة ,Footballer/لاعب humans who work in politics as .(Politician/سياسي

This, in turn, caused a deficiency in this important field, forcing us to expand the field

by adding the name of the named entity as well as its type(s) to the description to

lengthen and enrich it. One of the recommendations, in particular, is the necessity of

paying attention to Arabic content and checking it on the basis of evidence on Wiki-

data One of the recommendations, in particular, is the necessity of paying attention to

Arabic content and checking it on the basis of evidence on Wikidata.

In a related context, with regard to the evidence extracted from Wikipedia. As a re-

minder, one descriptive sentence was extracted for each named entity. It was noted

that this field is richer in information compared to the description field of the same-

named entity on the Wikidata. In general, with regard to Wikipedia, the information

on it is in the form of free text with a simple structured information box. Most of the

information extracted from the free text is good information regarding quality, but it

does not come without problems; this includes the presence of many languages mixed

with Arabic as aliases.

We presented a huge corpus for pairs of Arabic named entities called WikiGloss-

Context that were carefully extracted from the Wikidata and Wikipedia. The False

pairs were generated based on the True pairs with two different methods (cross-related

and false-local). As a result, WikiGlossContextcross-related contains 1,106,408 (True

and False) pairs and the WikiGlossContextfalse-local contains 1,142,280 (True and

False) pairs.

The results show that the models trained on combined dataset ArabGloss (Al-Hajj

& Jarrar, 2021) + 23 True pairs from WikiGlossContext corpus achieved good per-

formance (82%) on linking unnamed entities (concepts). While they achieved good

results (84%) when evaluating using the Wojood-NED corpus (which contains named

entities). It is also clear from the results of the experiments that the method used

124 Chapter 7. Conclusion and Future Work

in generating false pairs has the greatest impact on the performance of the models.

The results showed that the WikiGlossContextcross-related with False pairs generated

by cross-relating pairs gave better results on the Wojood-NED evaluation benchmark

with 76% accuracy. Besides, using Wikidata descriptions in the lookup component

has given different results from using Wikipedia descriptions. It positively affects some

models while negatively affecting others in terms of the accuracy measured.

7.3 Future Work

There is still space for enhancing Arabic software-specific named entity disambiguation

and linking. We will fine-tune another BERT for the NER task on the Wojood-NED

and Wojood corpora. This fine-tuned model will be able to recognize new six soft-

ware specific classes, along with 21 classes that Wojood is able to recognize. Moreover,

we plan to enrich the software-specific named entities dataset by including more Ara-

bic software entities such as software versions, file types, devices, functions, variables,

methods, constants, etc.

For the NED component, we plan to try different techniques to generate the False

pairs and study the effect on the fine-tuned BERT models’ performance. Moreover, we

plan to try different dataset combinations. Most importantly, we plan to experiment

more on whether to use (Wikidata or Wikipedia) descriptions as a glosses, by evaluat-

ing further models with different data combinations.

We also plan to extend our entity linking components to extract and link relations1

form software-related texts with Wikidata. Moreover, we plan to study the effect of

including the presented entity linking components in the classification of app reviews,

bug reports, and requirements identification, and how this will improve the accuracy
1Relations examples (founded by, developed at), the full list can be found using the URL https:

//www.wikidata.org/wiki/Wikidata:List_of_properties

https://www.wikidata.org/wiki/Wikidata:List_of_properties
https://www.wikidata.org/wiki/Wikidata:List_of_properties

7.4. Threats to Validity 125

of classifying such software-related content.

Finlay, we will include smarter techniques, using machine learning, in the candidate

lookup component by adopting vector-based semantic search by integrating the Elastic-

search framework with the current state-of-the-art on NLP for semantic representation

of language (BERT). This will help in reducing the errors propagating through the

stages of the presented entity linking components, and make query search smarter by

understanding the context of the query. Besides, we manage to expand the local store

by adding more nodes from Wikidata by localizing non-Arabic nodes.

7.4 Threats to Validity

Internal validity : The Wojood-NED corpus was labeled and linked manually with

six software-specific tags and links to Wikidata using the Wikidata Q-identifier. The

threats to internal validity in this process include human factors in determining the

correct type for the named entity and a wrong Q-identifier. To mitigate this error, the

labeling process was reviewed and validated by NER experts.

Unlike the Wojood-NED corpus, the WikiGlossContext corpus pairs were constructed

automatically. The threats to internal validity in this process includes code errors dur-

ing the True and False pairs generation. To mitigate this risk, the code was carefully

tested during the development process. Besides, the data was validated and audited

manually, and double-checked by two persons before eliminating improper data.

External Validity : The datasets used in this thesis were carefully constructed using

a set of heuristics that are clear and strict, they can be easily followed and repeated.

Moreover, the environmental setup and hyperparameters are well defined. Hence, other

researchers can use the same results to fine-tune BERT to obtain the same results using

the datasets define in Table 4.10. The code was written in a manner that makes it easy

for other researchers to replicate the study. Therefore, the generalization of the thesis

126 Chapter 7. Conclusion and Future Work

results is considerable. Moreover, other researchers can validate the model results on

the test set, since the final fine-tuned models generated from each experiment and the

different test sets used are uploaded on the Huggingface website.

127

Bibliography

Abdelali, A., Hassan, S., Mubarak, H., Darwish, K., & Samih, Y. (2021). Pre-training

BERT on arabic tweets: Practical considerations. CoRR, abs/2102.10684. https:

//arxiv.org/abs/2102.10684

Abdul-Mageed, M., Elmadany, A., & Nagoudi, E. M. B. (2021). ARBERT & MAR-

BERT: Deep bidirectional transformers for Arabic. Proceedings of the 59th An-

nual Meeting of the Association for Computational Linguistics and the 11th

International Joint Conference on Natural Language Processing (Volume 1:

Long Papers), 7088–7105. https://doi.org/10.18653/v1/2021.acl-long.551

Alam, M., Buscaldi, D., Cochez, M., Osborne, F., Recupero, D. R., Sack, H., Sevgili, Ö.,

Shelmanov, A., Arkhipov, M., Panchenko, A., Biemann, C., Alam, M., Buscaldi,

D., Cochez, M., Osborne, F., Refogiato Recupero, D., & Sack, H. (2022). Neural

entity linking: A survey of models based on deep learning. Semant. Web, 13(3),

527–570. https://doi.org/10.3233/SW-222986

Al-Hajj, M., & Jarrar, M. (2021). Arabglossbert: Fine-tuning bert on context-gloss

pairs for wsd. Proceedings of the International Conference on Recent Advances

in Natural Language Processing (RANLP 2021), 40–48. https://doi.org/10.

26615/978-954-452-072-4_005

Alian, M., Awajan, A., & Al-Kouz, A. (2016). Word sense disambiguation for arabic

text using wikipedia and vector space model. Int. J. Speech Technol., 19(4),

857–867. https://doi.org/10.1007/s10772-016-9376-y

Alotaibi, F., & Lee, M. (2014). A hybrid approach to features representation for fine-

grained Arabic named entity recognition. Proceedings of COLING 2014, the

https://arxiv.org/abs/2102.10684
https://arxiv.org/abs/2102.10684
https://doi.org/10.18653/v1/2021.acl-long.551
https://doi.org/10.3233/SW-222986
https://doi.org/10.26615/978-954-452-072-4_005
https://doi.org/10.26615/978-954-452-072-4_005
https://doi.org/10.1007/s10772-016-9376-y

128 Bibliography

25th International Conference on Computational Linguistics: Technical Papers,

984–995. https://aclanthology.org/C14-1093

Al-Qawasmeh, O., Al-Smadi, M., & Fraihat, N. (2016). Arabic named entity disam-

biguation using linked open data. 2016 7th International Conference on Infor-

mation and Communication Systems (ICICS), 333–338

The authors of this paper proposed a methodology to solve the Arabic named-

entities disambiguation on DBpedia for three types of entities (person, location

and organization) using query label expansion and text similarity techniques.

A reference data-set of over 10K annotated entities based on Wikipedia and/or

DBpedia was prepared. The proposed method is an enhancement over the a

hybrid approach made by Al-Smadi et al., 2015.

Al-Smadi, M., Al-Dalabih, I., Jararweh, Y., & Juola, P. (2019). Leveraging linked open

data to automatically answer arabic questions. IEEE Access, 7, 177122–177136.

Al-Smadi, M., Talafha, B., Qawasmeh, O., Alandoli, M. N., Hussien, W. A., & Guetl, C.

(2015). A hybrid approach for arabic named entity disambiguation. Proceedings

of the 15th International Conference on Knowledge Technologies and Data-

driven Business, 1–4.

Antoun, W., Baly, F., & Hajj, H. (2020). AraBERT: Transformer-based model for

Arabic language understanding. Proceedings of the 4th Workshop on Open-

Source Arabic Corpora and Processing Tools, with a Shared Task on Offensive

Language Detection, 9–15. https://aclanthology.org/2020.osact-1.2

Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., & Ives, Z. (2007). Db-

pedia: A nucleus for a web of open data. In K. Aberer, K.-S. Choi, N. Noy, D.

Allemang, K.-I. Lee, L. Nixon, J. Golbeck, P. Mika, D. Maynard, R. Mizoguchi,

G. Schreiber, & P. Cudré-Mauroux (Eds.), The semantic web (pp. 722–735).

Springer Berlin Heidelberg.

Banerjee, D., Chaudhuri, D., Dubey, M., & Lehmann, J. (2020). Pnel: Pointer net-

work based end-to-end entity linking over knowledge graphs. The Semantic Web

– ISWC 2020: 19th International Semantic Web Conference, Athens, Greece,

https://aclanthology.org/C14-1093
https://aclanthology.org/2020.osact-1.2

Bibliography 129

November 2–6, 2020, Proceedings, Part I, 21–38. https://doi.org/10.1007/978-

3-030-62419-4_2

Bengio, Y., Ducharme, R., Vincent, P., & Janvin, C. (2003). A neural probabilistic

language model. J. Mach. Learn. Res., 3(null), 1137–1155.

Berry, D. M., Science, P. D. C., Krieger, M. M., & Mathematics, P. D. (2000). From

contract drafting to software specification: Linguistic sources of ambiguity - a

handbook version 1.0.

Bollacker, K., Evans, C., Paritosh, P., Sturge, T., & Taylor, J. (2008). Freebase: A

collaboratively created graph database for structuring human knowledge. Pro-

ceedings of the 2008 ACM SIGMOD International Conference on Management

of Data, 1247–1250. https://doi.org/10.1145/1376616.1376746

Botha, J. A., Shan, Z., & Gillick, D. (2020). Entity Linking in 100 Languages. Pro-

ceedings of the 2020 Conference on Empirical Methods in Natural Language

Processing (EMNLP), 7833–7845. https://doi.org/10.18653/v1/2020.emnlp-

main.630

Bouziane, A., Bouchiha, D., & Doumi, N. (2020). Annotating arabic texts with linked

data. 2020 4th International Symposium on Informatics and its Applications

(ISIA), 1–5. https://doi.org/10.1109/ISIA51297.2020.9416543

Bouziane, A., Bouchiha, D., Rebhi, R., Lorenzini, G., Doumi, N., Menni, Y., & Ahmad,

H. (2021). Arald: Arabic annotation using linked data. Ingénierie des Systèmes

d’Information, 26(2).

Bringmann, B., Nijssen, S., & Zimmermann, A. (2011). Pattern-based classification: A

unifying perspective. https://doi.org/10.48550/ARXIV.1111.6191

Cetoli, A., Akbari, M., Bragaglia, S., O’Harney, A. D., & Sloan, M. (2018). Named

entity disambiguation using deep learning on graphs. CoRR, abs/1810.09164.

http://arxiv.org/abs/1810.09164

Chisholm, A., & Hachey, B. (2015). Entity disambiguation with web links. Transactions

of the Association for Computational Linguistics, 3, 145–156. https://doi.org/

10.1162/tacl_a_00129

https://doi.org/10.1007/978-3-030-62419-4_2
https://doi.org/10.1007/978-3-030-62419-4_2
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.18653/v1/2020.emnlp-main.630
https://doi.org/10.18653/v1/2020.emnlp-main.630
https://doi.org/10.1109/ISIA51297.2020.9416543
https://doi.org/10.48550/ARXIV.1111.6191
http://arxiv.org/abs/1810.09164
https://doi.org/10.1162/tacl_a_00129
https://doi.org/10.1162/tacl_a_00129

130 Bibliography

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. P.

(2011). Natural language processing (almost) from scratch. CoRR, abs/1103.0398.

http://arxiv.org/abs/1103.0398

Darwish, K., Habash, N., Abbas, M., Al-Khalifa, H., Al-Natsheh, H. T., Bouamor, H.,

Bouzoubaa, K., Cavalli-Sforza, V., El-Beltagy, S. R., El-Hajj, W., Jarrar, M., &

Mubarak, H. (2021). A panoramic survey of natural language processing in the

arab worlds. Commun. ACM, 64(4), 72–81. https://doi.org/10.1145/3447735

Delpeuch, A. (2020). Opentapioca: Lightweight entity linking for wikidata. In L.-A.

Kaffee, O. Tifrea-Marciuska, E. Simperl, & D. Vrandecic (Eds.), Proceedings

of the 1st wikidata workshop (wikidata 2020) co-located with 19th international

semantic web conference(opub 2020), virtual conference, november 2-6, 2020.

CEUR-WS.org. http://ceur-ws.org/Vol-2773/paper-02.pdf

Derczynski, L., Maynard, D., Rizzo, G., van Erp, M., Gorrell, G., Troncy, R., Petrak,

J., & Bontcheva, K. (2014). Analysis of named entity recognition and linking

for tweets. CoRR, abs/1410.7182. http://arxiv.org/abs/1410.7182

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep

bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Ehrlinger, L., & Wöß, W. (2016). Towards a definition of knowledge graphs. In M.

Martin, M. Cuquet, & E. Folmer (Eds.), Joint proceedings of the posters and

demos track of the 12th international conference on semantic systems - seman-

tics2016 and the 1st international workshop on semantic change & evolving

semantics (success’16) co-located with the 12th international conference on se-

mantic systems (semantics 2016), leipzig, germany, september 12-15, 2016.

CEUR-WS.org. http://ceur-ws.org/Vol-1695/paper4.pdf

Elazhary, H. (2016). Avoiding ambiguities in arabic software user requirements. Inter-

national Journal of Software Engineering and Its Applications, 10(6), 141–160.

El-khair, I. A. (2016). 1.5 billion words arabic corpus. https ://doi .org/10 .48550/

ARXIV.1611.04033

http://arxiv.org/abs/1103.0398
https://doi.org/10.1145/3447735
http://ceur-ws.org/Vol-2773/paper-02.pdf
http://arxiv.org/abs/1410.7182
http://ceur-ws.org/Vol-1695/paper4.pdf
https://doi.org/10.48550/ARXIV.1611.04033
https://doi.org/10.48550/ARXIV.1611.04033

Bibliography 131

Elnaggar, A., Otto, R., & Matthes, F. (2018). Deep learning for named-entity linking

with transfer learning for legal documents. Proceedings of the 2018 Artificial

Intelligence and Cloud Computing Conference, 23–28. https://doi.org/10.1145/

3299819.3299846

El-Razzaz, M., Fakhr, M. W., & Maghraby, F. A. (2021). Arabic gloss wsd using bert.

Applied Sciences, 11(6). https://doi.org/10.3390/app11062567

Elsahar, H., Vougiouklis, P., Remaci, A., Gravier, C., Hare, J., Laforest, F., & Simperl,

E. (2018). T-rex: A large scale alignment of natural language with knowledge

base triples. Proceedings of the Eleventh International Conference on Language

Resources and Evaluation (LREC 2018).

Esmeir, S. (2021). SERAG: Semantic entity retrieval from Arabic knowledge graphs.

Proceedings of the Sixth Arabic Natural Language Processing Workshop, 219–

225. https://aclanthology.org/2021.wanlp-1.24

Evans, Z. (2022). Knowledge about knowledge graphs. Retrieved January 7, 2022, from

https://community.atlassian.com/t5/Confluence-questions/Knowledge-graph/

qaq-p/1565284

Fürnkranz, J. (2013). Rule-based methods. In W. Dubitzky, O. Wolkenhauer, K.-H.

Cho, & H. Yokota (Eds.), Encyclopedia of systems biology (pp. 1883–1888).

Springer New York. https://doi.org/10.1007/978-1-4419-9863-7_610

Gad-Elrab, M. H., Yosef, M. A., & Weikum, G. (2015). Named entity disambiguation

for resource-poor languages. Proceedings of the Eighth Workshop on Exploiting

Semantic Annotations in Information Retrieval, 29–34.

Ganea, O.-E., & Hofmann, T. (2017). Deep joint entity disambiguation with local neural

attention. CoRR, abs/1704.04920. http://arxiv.org/abs/1704.04920

Gardner, M., Grus, J., Neumann, M., Tafjord, O., Dasigi, P., Liu, N. F., Peters, M.,

Schmitz, M., & Zettlemoyer, L. (2018). AllenNLP: A deep semantic natural

language processing platform. Proceedings of Workshop for NLP Open Source

Software (NLP-OSS), 1–6. https://doi.org/10.18653/v1/W18-2501

https://doi.org/10.1145/3299819.3299846
https://doi.org/10.1145/3299819.3299846
https://doi.org/10.3390/app11062567
https://aclanthology.org/2021.wanlp-1.24
https://community.atlassian.com/t5/Confluence-questions/Knowledge-graph/qaq-p/1565284
https://community.atlassian.com/t5/Confluence-questions/Knowledge-graph/qaq-p/1565284
https://doi.org/10.1007/978-1-4419-9863-7_610
http://arxiv.org/abs/1704.04920
https://doi.org/10.18653/v1/W18-2501

132 Bibliography

Gasmi, H., Bouras, A., & Laval, J. (2018). Lstm recurrent neural networks for cyber-

security named entity recognition. ICSEA, 11, 2018.

Gravili, G., Benvenuto, M., Avram, A., & Viola, C. (2018). The influence of the digital

divide on big data generation within supply chain management. The Interna-

tional Journal of Logistics Management. https://doi.org/10.3233/SW-212865

Group, W. (2022). Https://wikidata-todo.toolforge.org/stats.php?fbclid=iwar2wnkjhk6efel69bzuqjaxutcjueayuq8zn0p-

l6wvcuvjvlyypcbgl0q0 [(Accessed on 08/31/2022)].

Hachey, B., Radford, W., Nothman, J., Honnibal, M., & Curran, J. R. (2013). Evalu-

ating entity linking with wikipedia [Artificial Intelligence, Wikipedia and Semi-

Structured Resources]. Artificial Intelligence, 194, 130–150. https://doi.org/

https://doi.org/10.1016/j.artint.2012.04.005

Hadni, M., Ouatik, S. E. A., & Lachkar, A. (2016). Word sense disambiguation for

arabic text categorization. Int. Arab J. Inf. Technol., 13(1A), 215–222.

Haff, K. E., Jarrar, M., Hammouda, T., & Zaraket, F. (2022). Curras + baladi: Towards

a levantine corpus. Proceedings of the International Conference on Language

Resources and Evaluation (LREC 2022). https://arxiv.org/pdf/2205.09692.pdf

Harandizadeh, B., & Singh, S. (2020). Tweeki: Linking named entities on Twitter to a

knowledge graph. Proceedings of the Sixth Workshop on Noisy User-generated

Text (W-NUT 2020), 222–231. https://doi.org/10.18653/v1/2020.wnut-1.29

Hoffart, J., Milchevski, D., & Weikum, G. (2014). Stics: Searching with strings, things,

and cats. Proceedings of the 37th International ACM SIGIR Conference on

Research & Development in Information Retrieval, 1247–1248. https://doi.org/

10.1145/2600428.2611177

Hoffart, J., Yosef, M. A., Bordino, I., Fürstenau, H., Pinkal, M., Spaniol, M., Taneva,

B., Thater, S., & Weikum, G. (2011). Robust disambiguation of named entities

in text. Proceedings of the 2011 Conference on Empirical Methods in Natural

Language Processing, 782–792.

Huang, B., Wang, H., Wang, T., Liu, Y., & Liu, Y. (2020). Entity Linking for Short

Text Using Structured Knowledge Graph via Multi-Grained Text Matching.

https://doi.org/10.3233/SW-212865
https://doi.org/https://doi.org/10.1016/j.artint.2012.04.005
https://doi.org/https://doi.org/10.1016/j.artint.2012.04.005
https://arxiv.org/pdf/2205.09692.pdf
https://doi.org/10.18653/v1/2020.wnut-1.29
https://doi.org/10.1145/2600428.2611177
https://doi.org/10.1145/2600428.2611177

Bibliography 133

Proc. Interspeech 2020, 4178–4182. https://doi.org/10.21437/Interspeech.2020-

1934

Inoue, G., Alhafni, B., Baimukan, N., Bouamor, H., & Habash, N. (2021). The in-

terplay of variant, size, and task type in Arabic pre-trained language models.

Proceedings of the Sixth Arabic Natural Language Processing Workshop.

James, P. (1991). Knowledge graphs. University of Twente, Faculty of Applied Mathe-

matics.

Jarrar, M. (2005). Towards methodological principles for ontology engineering (Doctoral

dissertation). Vrije Universiteit Brussel. Brussels, Belgium.

Jarrar, M. (2011). Building a formal arabic ontology (invited paper). http://www.

jarrar.info/publications/J11.pdf

Jarrar, M. (2020). Digitization of arabic lexicons. Arabic language status report (pp. 214–

217). UAE Ministry of Culture; Youth.

Jarrar, M. (2021). The arabic ontology - an arabic wordnet with ontologically clean

content. Applied Ontology Journal, 16(1), 1–26. https://doi.org/10.3233/AO-

200241

Jarrar, M., & Amayreh, H. (2019a). An arabic-multilingual database with a lexico-

graphic search engine. The 24th International Conference on Applications of

Natural Language to Information Systems (NLDB 2019), 11608, 234–246. https:

//doi.org/10.1007/978-3-030-23281-8_19

Jarrar, M., & Amayreh, H. (2019b). An arabic-multilingual database with a lexico-

graphic search engine. International Conference on Applications of Natural

Language to Information Systems, 234–246.

Jarrar, M., Habash, N., Alrimawi, F., Akra, D., & Zalmout, N. (2017). Curras: An

annotated corpus for the palestinian arabic dialect. Journal Language Resources

and Evaluation, 51(3), Article 2-s2.0-85001544989, 745–775. https://doi.org/

10.1007/S10579-016-9370-7

Jarrar, M., Khalilia, M., & Ghanem, S. (2022). Wojood: Nested arabic named entity

corpus and recognition using bert. Proceedings of the International Conference

https://doi.org/10.21437/Interspeech.2020-1934
https://doi.org/10.21437/Interspeech.2020-1934
http://www.jarrar.info/publications/J11.pdf
http://www.jarrar.info/publications/J11.pdf
https://doi.org/10.3233/AO-200241
https://doi.org/10.3233/AO-200241
https://doi.org/10.1007/978-3-030-23281-8_19
https://doi.org/10.1007/978-3-030-23281-8_19
https://doi.org/10.1007/S10579-016-9370-7
https://doi.org/10.1007/S10579-016-9370-7

134 Bibliography

on Language Resources and Evaluation (LREC 2022). https://arxiv.org/pdf/

2205.09651.pdf

Jarrar, M., & Meersman, R. (2008). Ontology engineering —the dogma approach. Ad-

vances in web semantic i (pp. 7–34). Springer. https://doi.org/10.1007/978-3-

540-89784-2_2

Jarrar, M., Zaraket, F., Asia, R., & Amayreh, H. (2018). Diacritic-based matching of

arabic words. ACM Asian and Low-Resource Language Information Processing,

18(2), 10:1–10:21. https://doi.org/10.1145/3242177

Jia, Y., Qi, Y., Shang, H., Jiang, R., & Li, A. (2018). A practical approach to con-

structing a knowledge graph for cybersecurity. Engineering, 4(1), 53–60.

Kannan Ravi, M. P., Singh, K., Mulang’, I. O., Shekarpour, S., Hoffart, J., & Lehmann,

J. (2021). CHOLAN: A modular approach for neural entity linking on Wikipedia

and Wikidata. Proceedings of the 16th Conference of the European Chapter of

the Association for Computational Linguistics: Main Volume, 504–514. https:

//doi.org/10.18653/v1/2021.eacl-main.40

Kitchenham, B., & Charters, S. (2007). Guidelines for performing systematic literature

reviews in software engineering (tech. rep.). Technical report, EBSE Technical

Report EBSE-2007-01.

Kolitsas, N., Ganea, O.-E., & Hofmann, T. (2018). End-to-end neural entity linking.

CoRR, abs/1808.07699. http://arxiv.org/abs/1808.07699

Kuc, R., & Rogozinski, M. (2013). Elasticsearch server. Packt Publishing, Limited.

https://books.google.ps/books?id=PEFK3MuwBsIC

Li, N., Zheng, L., Wang, Y., & Wang, B. (2019). Feature-specific named entity recog-

nition in software development social content. 2019 IEEE International Con-

ference on Smart Internet of Things (SmartIoT), 175–182. https://doi.org/10.

1109/SmartIoT.2019.00035

https://arxiv.org/pdf/2205.09651.pdf
https://arxiv.org/pdf/2205.09651.pdf
https://doi.org/10.1007/978-3-540-89784-2_2
https://doi.org/10.1007/978-3-540-89784-2_2
https://doi.org/10.1145/3242177
https://doi.org/10.18653/v1/2021.eacl-main.40
https://doi.org/10.18653/v1/2021.eacl-main.40
http://arxiv.org/abs/1808.07699
https://books.google.ps/books?id=PEFK3MuwBsIC
https://doi.org/10.1109/SmartIoT.2019.00035
https://doi.org/10.1109/SmartIoT.2019.00035

Bibliography 135

Lison, P., & Tiedemann, J. (2016). OpenSubtitles2016: Extracting large parallel cor-

pora from movie and TV subtitles. Proceedings of the Tenth International Con-

ference on Language Resources and Evaluation (LREC’16), 923–929. https :

//aclanthology.org/L16-1147

Logeswaran, L., Chang, M.-W., Lee, K., Toutanova, K., Devlin, J., & Lee, H. (2019).

Zero-shot entity linking by reading entity descriptions. CoRR, abs/1906.07348.

http://arxiv.org/abs/1906.07348

Maalej, W., Kurtanović, Z., Nabil, H., & Stanik, C. (2016). On the automatic classifi-

cation of app reviews. Requirements Engineering, 21(3), 311–331.

Maalej, W., & Nabil, H. (2015). Bug report, feature request, or simply praise? on auto-

matically classifying app reviews. 2015 IEEE 23rd International Requirements

Engineering Conference (RE), 116–125. https://doi.org/10.1109/RE.2015.

7320414

Makris, C., Pispirigos, G., & Simos, M. A. (2020). Text semantic annotation: A dis-

tributed methodology based on community coherence. Algorithms, 13(7), 160.

Malik, G., Çevik, M., Khedr, Y., Parikh, D., & Başar, A. (2021). Named entity recog-

nition on software requirements specification documents. Proceedings of the

Canadian Conference on Artificial Intelligence. https ://doi . org/10 .21428/

594757db.507e7951

Malyshev, S., Krötzsch, M., González, L., Gonsior, J., & Bielefeldt, A. (2018a). Getting

the most out of wikidata: Semantic technology usage in wikipedia’s knowledge

graph. In D. Vrandečić, K. Bontcheva, M. C. Suárez-Figueroa, V. Presutti, I.

Celino, M. Sabou, L.-A. Kaffee, & E. Simperl (Eds.), The semantic web – iswc

2018 (pp. 376–394). Springer International Publishing.

Malyshev, S., Krötzsch, M., González, L., Gonsior, J., & Bielefeldt, A. (2018b). Getting

the most out of wikidata: Semantic technology usage in wikipedia’s knowledge

graph. In D. Vrandečić, K. Bontcheva, M. C. Suárez-Figueroa, V. Presutti, I.

Celino, M. Sabou, L.-A. Kaffee, & E. Simperl (Eds.), The semantic web – iswc

2018 (pp. 376–394). Springer International Publishing.

https://aclanthology.org/L16-1147
https://aclanthology.org/L16-1147
http://arxiv.org/abs/1906.07348
https://doi.org/10.1109/RE.2015.7320414
https://doi.org/10.1109/RE.2015.7320414
https://doi.org/10.21428/594757db.507e7951
https://doi.org/10.21428/594757db.507e7951

136 Bibliography

Marrero, M., Urbano, J., Sánchez-Cuadrado, S., Morato, J., & Gómez-Berbı́s, J. M.

(2013). Named entity recognition: Fallacies, challenges and opportunities. Com-

puter Standards & Interfaces, 35(5), 482–489.

McCrae, J. P. (2018). Mapping WordNet instances to Wikipedia. Proceedings of the 9th

Global Wordnet Conference, 61–68. https://aclanthology.org/2018.gwc-1.8

McCrae, J. P., & Buitelaar, P. (2018). Linking datasets using semantic textual simi-

larity. Cybernetics and Information Technologies, 18(1), 109–123. https://doi.

org/doi:10.2478/cait-2018-0010

McCrae, J. P., & Cillessen, D. (2021). Towards a linking between WordNet and Wiki-

data. Proceedings of the 11th Global Wordnet Conference, 252–257. https://

aclanthology.org/2021.gwc-1.29

Meij, E., Balog, K., & Odijk, D. (2014). Entity linking and retrieval for semantic search.

Proceedings of the 7th ACM International Conference on Web Search and Data

Mining, 683–684. https://doi.org/10.1145/2556195.2556201

Mich, L., Franch, M., & Inverardi, P. N. (2004). Market research for requirements

analysis using linguistic tools. Requir. Eng., 9(1), 40–56. https://doi.org/10.

1007/s00766-003-0179-8

Möller, C., Lehmann, J., & Usbeck, R. (2021). Survey on english entity linking on

wikidata. https://doi.org/10.48550/ARXIV.2112.01989

Mulang’, I. O., Singh, K., Prabhu, C., Nadgeri, A., Hoffart, J., & Lehmann, J. (2020).

Evaluating the impact of knowledge graph context on entity disambiguation

models. Proceedings of the 29th ACM International Conference on Information

& Knowledge Management, 2157–2160. https : //doi . org/10 . 1145/3340531 .

3412159

Mulang’, I. O., Singh, K., Vyas, A., Shekarpour, S., Vidal, M.-E., Lehmann, J., & Auer,

S. (2020). Encoding knowledge graph entity aliases in attentive neural network

for wikidata entity linking. Web Information Systems Engineering – WISE 2020:

21st International Conference, Amsterdam, The Netherlands, October 20–24,

https://aclanthology.org/2018.gwc-1.8
https://doi.org/doi:10.2478/cait-2018-0010
https://doi.org/doi:10.2478/cait-2018-0010
https://aclanthology.org/2021.gwc-1.29
https://aclanthology.org/2021.gwc-1.29
https://doi.org/10.1145/2556195.2556201
https://doi.org/10.1007/s00766-003-0179-8
https://doi.org/10.1007/s00766-003-0179-8
https://doi.org/10.48550/ARXIV.2112.01989
https://doi.org/10.1145/3340531.3412159
https://doi.org/10.1145/3340531.3412159

Bibliography 137

2020, Proceedings, Part I, 328–342. https://doi.org/10.1007/978-3-030-62005-

9_24

Nikolaev, F., & Kotov, A. (2020). Joint word and entity embeddings for entity retrieval

from a knowledge graph. In J. M. Jose, E. Yilmaz, J. Magalhães, P. Castells,

N. Ferro, M. J. Silva, & F. Martins (Eds.), Advances in information retrieval

(pp. 141–155). Springer International Publishing.

Okazaki, N. (2007). Crfsuite: A fast implementation of conditional random fields (crfs).

Pellissier Tanon, T., Weikum, G., & Suchanek, F. (2020). Yago 4: A reason-able knowl-

edge base. In A. Harth, S. Kirrane, A.-C. Ngonga Ngomo, H. Paulheim, A. Rula,

A. L. Gentile, P. Haase, & M. Cochez (Eds.), The semantic web (pp. 583–596).

Springer International Publishing.

Perkins, D. (2020). Separating the signal from the noise: Predicting the correct entities

in named-entity linking.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer,

L. (2018). Deep contextualized word representations. Proceedings of the 2018

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, Volume 1 (Long Papers), 2227–

2237. https://doi.org/10.18653/v1/N18-1202

Phan, M. C., Sun, A., Tay, Y., Han, J., & Li, C. (2017). Neupl: Attention-based semantic

matching and pair-linking for entity disambiguation. Proceedings of the 2017

ACM on Conference on Information and Knowledge Management, 1667–1676.

Qi, Y., Jiang, R., Jia, Y., Li, R., & Li, A. (2018). Association analysis algorithm based

on knowledge graph for space-ground integrated network. 2018 IEEE 18th In-

ternational Conference on Communication Technology (ICCT), 222–226. https:

//doi.org/10.1109/ICCT.2018.8600234

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language

understanding by generative pre-training.

https://doi.org/10.1007/978-3-030-62005-9_24
https://doi.org/10.1007/978-3-030-62005-9_24
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.1109/ICCT.2018.8600234
https://doi.org/10.1109/ICCT.2018.8600234

138 Bibliography

Raiman, J., & Raiman, O. (2018). Deeptype: Multilingual entity linking by neural

type system evolution. In S. A. McIlraith & K. Q. Weinberger (Eds.), Proceed-

ings of the thirty-second AAAI conference on artificial intelligence, (aaai-18),

the 30th innovative applications of artificial intelligence (iaai-18), and the 8th

AAAI symposium on educational advances in artificial intelligence (eaai-18),

new orleans, louisiana, usa, february 2-7, 2018 (pp. 5406–5413). AAAI Press.

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17148

Ramshaw, L. A., & Marcus, M. P. (1999). Text chunking using transformation-based

learning. In S. Armstrong, K. Church, P. Isabelle, S. Manzi, E. Tzoukermann,

& D. Yarowsky (Eds.), Natural language processing using very large corpora

(pp. 157–176). Springer Netherlands. https://doi.org/10.1007/978-94- 017-

2390-9_10

Ramshaw, L., & Marcus, M. (1995). Text chunking using transformation-based learning.

Third Workshop on Very Large Corpora. https://aclanthology.org/W95-0107

Ratinov, L., Roth, D., Downey, D., & Anderson, M. (2011). Local and global algorithms

for disambiguation to Wikipedia. Proceedings of the 49th Annual Meeting of

the Association for Computational Linguistics: Human Language Technologies,

1375–1384. https://aclanthology.org/P11-1138

Rizzo, G., & Troncy, R. (2012). NERD: A framework for unifying named entity recog-

nition and disambiguation extraction tools. Proceedings of the Demonstrations

at the 13th Conference of the European Chapter of the Association for Compu-

tational Linguistics, 73–76. https://aclanthology.org/E12-2015

Ryan, K. (1993). The role of natural language in requirements engineering. [1993] Pro-

ceedings of the IEEE International Symposium on Requirements Engineering,

240–242. https://doi.org/10.1109/ISRE.1993.324852

Sakor, A., Onando Mulang’, I., Singh, K., Shekarpour, S., Esther Vidal, M., Lehmann,

J., & Auer, S. (2019). Old is gold: Linguistic driven approach for entity and

relation linking of short text. Proceedings of the 2019 Conference of the North

American Chapter of the Association for Computational Linguistics: Human

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17148
https://doi.org/10.1007/978-94-017-2390-9_10
https://doi.org/10.1007/978-94-017-2390-9_10
https://aclanthology.org/W95-0107
https://aclanthology.org/P11-1138
https://aclanthology.org/E12-2015
https://doi.org/10.1109/ISRE.1993.324852

Bibliography 139

Language Technologies, Volume 1 (Long and Short Papers), 2336–2346. https:

//doi.org/10.18653/v1/N19-1243

Sakor, A., Singh, K., Patel, A., & Vidal, M.-E. (2020). Falcon 2.0: An entity and

relation linking tool over wikidata. Proceedings of the 29th ACM International

Conference on Information & Knowledge Management, 3141–3148. https://doi.

org/10.1145/3340531.3412777

Sarawagi, S. (2008). Information extraction. Foundations and Trends® in Databases,

1(3), 261–377. https://doi.org/10.1561/1900000003

Singhal, A. (2012). Introducing the knowledge graph: Things, not strings [2020-11-13].

https ://www.blog .google/products/search/ introducing - knowledge - graph-

things-not/

Sorokin, D., & Gurevych, I. (2018a). Mixing context granularities for improved entity

linking on question answering data across entity categories. https://doi.org/10.

48550/ARXIV.1804.08460

Sorokin, D., & Gurevych, I. (2018b). Mixing context granularities for improved entity

linking on question answering data across entity categories. CoRR, abs/1804.08460.

http://arxiv.org/abs/1804.08460

Spitkovsky, V. I., & Chang, A. X. (2012). A cross-lingual dictionary for English Wikipedia

concepts. Proceedings of the Eighth International Conference on Language Re-

sources and Evaluation (LREC’12), 3168–3175. http://www.lrec- conf .org/

proceedings/lrec2012/pdf/266_Paper.pdf

Sri Nurdiati, S., & Hoede, C. (2008). 25 years development of knowledge graph theory:

The results and the challenge. University of Twente.

Suchanek, F. M., Kasneci, G., & Weikum, G. (2007). Yago: A core of semantic knowl-

edge. In C. L. Williamson, M. E. Zurko, P. F. Patel-Schneider, & P. J. Shenoy

(Eds.), Proceedings of the 16th international conference on world wide web,

WWW 2007, banff, alberta, canada, may 8-12, 2007 (pp. 697–706). ACM. https:

//doi.org/10.1145/1242572.1242667

https://doi.org/10.18653/v1/N19-1243
https://doi.org/10.18653/v1/N19-1243
https://doi.org/10.1145/3340531.3412777
https://doi.org/10.1145/3340531.3412777
https://doi.org/10.1561/1900000003
https://www.blog.google/products/search/introducing-knowledge-graph-things-not/
https://www.blog.google/products/search/introducing-knowledge-graph-things-not/
https://doi.org/10.48550/ARXIV.1804.08460
https://doi.org/10.48550/ARXIV.1804.08460
http://arxiv.org/abs/1804.08460
http://www.lrec-conf.org/proceedings/lrec2012/pdf/266_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/266_Paper.pdf
https://doi.org/10.1145/1242572.1242667
https://doi.org/10.1145/1242572.1242667

140 Bibliography

Tabassum, J., Maddela, M., Xu, W., & Ritter, A. (2020). Code and named entity

recognition in stackoverflow. Proceedings of the 58th Annual Meeting of the

Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020,

4913–4926. https://doi.org/10.18653/v1/2020.acl-main.443

Tan, L., Liu, C., Li, Z., Wang, X., Zhou, Y., & Zhai, C. (2014). Bug characteristics in

open source software. Empirical Softw. Engg., 19(6), 1665–1705. https://doi.

org/10.1007/s10664-013-9258-8

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł.,

& Polosukhin, I. (2017). Attention is all you need. In I. Guyon, U. V. Luxburg, S.

Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Advances

in neural information processing systems. Curran Associates, Inc. https : / /

proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-

Paper.pdf

Vrandečić, D., & Krötzsch, M. (2014). Wikidata: A free collaborative knowledgebase.

Commun. ACM, 57(10), 78–85. https://doi.org/10.1145/2629489

Weichselbraun, A., Kuntschik, P., & Braşoveanu, A. M. (2018). Mining and leveraging

background knowledge for improving named entity linking. Proceedings of the

8th International Conference on Web Intelligence, Mining and Semantics. https:

//doi.org/10.1145/3227609.3227670

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M.,

Cao, Y., Gao, Q., Macherey, K., Klingner, J., Shah, A., Johnson, M., Liu, X.,

Kaiser, L., Gouws, S., Kato, Y., Kudo, T., Kazawa, H., … Dean, J. (2016).

Google’s neural machine translation system: Bridging the gap between human

and machine translation. CoRR, abs/1609.08144. http://arxiv.org/abs/1609.

08144

Ye, D., Xing, Z., Foo, C. Y., Ang, Z. Q., Li, J., & Kapre, N. (2016). Software-specific

named entity recognition in software engineering social content. 2016 IEEE 23rd

International Conference on Software Analysis, Evolution, and Reengineering

(SANER), 1, 90–101. https://doi.org/10.1109/SANER.2016.10

https://doi.org/10.18653/v1/2020.acl-main.443
https://doi.org/10.1007/s10664-013-9258-8
https://doi.org/10.1007/s10664-013-9258-8
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1145/2629489
https://doi.org/10.1145/3227609.3227670
https://doi.org/10.1145/3227609.3227670
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
https://doi.org/10.1109/SANER.2016.10

Bibliography 141

Yosef, M. A., Spaniol, M., & Weikum, G. (2014). AIDArabic a named-entity disam-

biguation framework for Arabic text. Proceedings of the EMNLP 2014 Workshop

on Arabic Natural Language Processing (ANLP), 187–195. https://doi.org/10.

3115/v1/W14-3626

Young, T., Hazarika, D., Poria, S., & Cambria, E. (2018). Recent trends in deep learning

based natural language processing [review article]. IEEE Computational Intel-

ligence Magazine, 13(3), 55–75. https://doi.org/10.1109/MCI.2018.2840738

Zeroual, I., Goldhahn, D., Eckart, T., & Lakhouaja, A. (2019). OSIAN: Open source in-

ternational Arabic news corpus - preparation and integration into the CLARIN-

infrastructure. Proceedings of the Fourth Arabic Natural Language Processing

Workshop, 175–182. https://doi.org/10.18653/v1/W19-4619

Zhao, R., & Mao, K. (2017). Fuzzy bag-of-words model for document representation.

IEEE transactions on fuzzy systems, 26(2), 794–804.

Zhou, C., Li, B., & Sun, X. (2020). Improving software bug-specific named entity recog-

nition with deep neural network. Journal of Systems and Software, 165, 110572.

https://doi.org/https://doi.org/10.1016/j.jss.2020.110572

Zhou, C., Li, B., Sun, X., & Guo, H. (2018). Recognizing software bug-specific named

entity in software bug repository. In F. Khomh, C. K. Roy, & J. Siegmund

(Eds.), Proceedings of the 26th conference on program comprehension, ICPC

2018, gothenburg, sweden, may 27-28, 2018 (pp. 108–119). ACM. https://doi.

org/10.1145/3196321.3196335

Zhou, L., Gao, J., Li, D., & Shum, H.-Y. (2020). The design and implementation of

xiaoice, an empathetic social chatbot. Computational Linguistics, 46(1), 53–93.

Zhu, Y., Kiros, R., Zemel, R. S., Salakhutdinov, R., Urtasun, R., Torralba, A., & Fidler,

S. (2015). Aligning books and movies: Towards story-like visual explanations

by watching movies and reading books. 2015 IEEE International Conference

on Computer Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015, 19–27.

https://doi.org/10.1109/ICCV.2015.11

https://doi.org/10.3115/v1/W14-3626
https://doi.org/10.3115/v1/W14-3626
https://doi.org/10.1109/MCI.2018.2840738
https://doi.org/10.18653/v1/W19-4619
https://doi.org/https://doi.org/10.1016/j.jss.2020.110572
https://doi.org/10.1145/3196321.3196335
https://doi.org/10.1145/3196321.3196335
https://doi.org/10.1109/ICCV.2015.11

142 Bibliography

Zou, X. (2020). A survey on application of knowledge graph. Journal of Physics: Con-

ference Series, 1487(1), 012016. https://doi.org/10.1088/1742-6596/1487/1/

012016

Zwicklbauer, S., Seifert, C., & Granitzer, M. (2016). Robust and collective entity disam-

biguation through semantic embeddings. Proceedings of the 39th International

ACM SIGIR conference on Research and Development in Information Retrieval,

425–434.

https://doi.org/10.1088/1742-6596/1487/1/012016
https://doi.org/10.1088/1742-6596/1487/1/012016

	Declaration of Authorship
	Acknowledgements
	Abstract
	Introduction
	Motivation
	Problem Statement
	Tasks Definition

	Research Questions
	Research Contributions
	Structure of Thesis

	Background
	Introduction
	Knowledge Graphs
	Knowledge Graphs Applications
	Wikidata
	The Wikidata Query Service

	Neural Arabic Language Models
	BERT
	BERT Architecture
	BERT Input/Output
	BERT Pre-training
	BERT Fine-tuning

	BERT Models for Arabic
	BERT multilingual
	AraBERT
	QARiB
	CAMeLBERT
	ARBERT & MARBERT

	Summary

	Literature Review
	Introduction
	Planning and Conducting The Review
	Named Entity Recognition in Software-related Text
	Named Entity Disambiguation and Linking
	Rule-based Approaches
	Word Embedding Approaches
	Neural-based Approaches
	Hybrid Approaches
	Statistical Approaches

	Ontology Concept Matching
	Word Sense Disambiguation
	Highlight the Research Gap
	Summary

	Research Methodology
	The Entity Disambiguation and Linking Process
	The Need For Annotated Corpora
	The Wojood-NED Corpus
	Software-specific NEL Tagging
	Linking Wojood-NED to Wikidata

	WikiGlossContext Pairs Corpus
	Gloss-Context Pairs Extraction

	Splitting into Training, Validation and Test Datasets
	Splitting WikiGlossContext Induced by The Cross-related Method
	Splitting WikiGlossContext Induced by The False-Local Method
	Combined Datasets

	Summary

	Candidate Lookup
	Introduction
	Candidate Lookup Methods
	Index and Analyzer
	Query Configurations
	Candidate Lookup Query Evaluation
	Summary

	Entity Linking
	Introduction
	Entity Disambiguation
	Environmental Setup
	Experiment Hyperparameters
	Experiments' Tracking

	Experiments' Results
	Experiments' Set One: BERT Models
	Experiments' Set Two: Different Datasets
	Remarkable Notes About the Results

	Experiments' Set Three: Disambiguation Evaluation
	Overall Disambiguation Evaluation
	NED Component Disambiguation Evaluation

	Implementing Linguist APIs for Entity Linking
	Named Entity Linking in Software-related Text
	Summary

	Conclusion and Future Work
	Introduction
	Conclusion
	Future Work
	Threats to Validity

